CMSC 478 Intro. to Machine Learning Spring 2024

KMA Solaiman

ksolaima@umbc.edu

Visual version of linear regression: Learning

Let $h_{\theta}(x) = \sum_{j=0}^{d} \theta_{j} x_{j}$ want to choose θ so that $h_{\theta}(x) \approx y$. One popular idea called **least squares**

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}.$$

Choose

$$\theta = \underset{\theta}{\operatorname{argmin}} J(\theta).$$

Solving the least squares optimization problem.

Gradient Descent

	size	bedrooms	lot size		Price
$\chi^{(1)}$	2104	4	45k	$y^{(1)}$	400
$\chi^{(2)}$	2500	3	30k	y ⁽²⁾	900

What's a prediction here?

$$h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3.$$

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}.$$

$$\theta^{(0)} = 0$$

$$\theta_j^{(t+1)} = \theta_j^{(t)} - \alpha \frac{\partial}{\partial \theta_j} J(\theta^{(t)}) \qquad \text{for } j = 0, \dots, d.$$

$$\theta_j^{(t+1)} = \theta_j^{(t)} - \alpha \frac{\partial}{\partial \theta_j} J(\theta^{(t)}) \text{ for } j = 0, \dots, d.$$

Note that α is called the **learning rate** or **step size**.

Let's compute the derivatives...

$$\frac{\partial}{\partial \theta_j} J(\theta^{(t)}) = \sum_{i=1}^n \frac{1}{2} \frac{\partial}{\partial \theta_j} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$
$$= \sum_{i=1}^n \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \frac{\partial}{\partial \theta_j} h_{\theta}(x^{(i)})$$

$$\theta_j^{(t+1)} = \theta_j^{(t)} - \alpha \frac{\partial}{\partial \theta_j} J(\theta^{(t)}) \text{ for } j = 0, \dots, d.$$

Note that α is called the **learning rate** or **step size**.

Let's compute the derivatives...

$$\frac{\partial}{\partial \theta_j} J(\theta^{(t)}) = \sum_{i=1}^n \frac{1}{2} \frac{\partial}{\partial \theta_j} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$
$$= \sum_{i=1}^n \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \frac{\partial}{\partial \theta_j} h_{\theta}(x^{(i)})$$

For our *particular* h_{θ} we have:

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_d x_d$$
 so $\frac{\partial}{\partial \theta_j} h_{\theta}(x) = x_j$

Thus, our update rule for component j can be written:

$$\theta_j^{(t+1)} = \theta_j^{(t)} - \alpha \sum_{i=1}^n \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}.$$

Thus, our update rule for component j can be written:

$$\theta_j^{(t+1)} = \theta_j^{(t)} - \alpha \sum_{i=1}^n \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}.$$

We write this in *vector notation* for j = 0, ..., d as:

$$\theta^{(t+1)} = \theta^{(t)} - \alpha \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x^{(i)}.$$

Saves us a lot of writing! And easier to understand . . . eventually.

Loss Function for Classification: 0-1 Loss

$$L_{0-1}(y,\mathbf{w}\cdot\mathbf{x}) = egin{cases} 0 & ext{if } y*\mathbf{w}\cdot\mathbf{x} > 0 \ 1 & ext{otherwise} \end{cases}$$

Perceptron Loss

$$L_P(y, \mathbf{w} \cdot \mathbf{x}) = egin{cases} 0 & ext{if } y * \mathbf{w} \cdot \mathbf{x} > 0 \ -y * \mathbf{w} \cdot \mathbf{x} & ext{otherwise} \end{cases}$$

Given a training set $\{(x^{(i)}, y^{(i)}) \text{ for } i = 1, ..., n\}$ let $y^{(i)} \in \{0, 1\}$. Want $h_{\theta}(x) \in [0, 1]$. Let's pick a smooth function:

$$h_{\theta}(x) = g(\theta^T x)$$

Here, g is a link function. There are many...but we'll pick one!

$$g(z)=\frac{1}{1+e^{-z}}.$$

Why the exp function?

One reason: A linear function has a range from $[-\infty, \infty]$ and we need to force it to be positive and sum to 1 in order to be a probability:

Given a training set $\{(x^{(i)}, y^{(i)}) \text{ for } i = 1, ..., n\}$ let $y^{(i)} \in \{0, 1\}$. Want $h_{\theta}(x) \in [0, 1]$. Let's pick a smooth function:

$$h_{\theta}(x) = g(\theta^T x)$$

Here, g is a link function. There are many... but we'll pick one!

$$g(z) = \frac{1}{1 + e^{-z}}$$
. SIGMOID

How do we interpret $h_{\theta}(x)$?

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

 $P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$

Let's write the Likelihood function. Recall:

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

 $P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$

Then,

$$L(\theta) = P(y \mid X; \theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \theta)$$

Let's write the Likelihood function. Recall:

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

 $P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$

Then,

$$L(\theta) = P(y \mid X; \theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \theta)$$

Conditional Distribution P(y | X)

Let's write the Likelihood function. Recall:

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

 $P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$

Then,

$$L(\theta) = P(y \mid X; \theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \theta)$$

How do we go to something similar to a cost function from P (y I X; θ) ?

- Maximum Likelihood Estimation (MLE)

Let's write the Likelihood function. Recall:

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

 $P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$

Then,

$$L(\theta) = P(y \mid X; \theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \theta)$$

$$= \prod_{i=1}^{n} h_{\theta}(x^{(i)})^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1 - y^{(i)}} \quad \text{exponents encode "if-then"}$$

Let's write the Likelihood function. Recall:

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

 $P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$

Then,

$$L(\theta) = P(y \mid X; \theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \theta)$$

$$= \prod_{i=1}^{n} h_{\theta}(x^{(i)})^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1 - y^{(i)}} \quad \text{exponents encode "if-then"}$$

Taking logs to compute the log likelihood $\ell(\theta)$ we have:

$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^{n} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

Now to solve it...

$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^{n} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

We maximize for θ but we already saw how to do this! Just compute derivative, run (S)GD and you're done with it!

Takeaway: This is *another* example of the max likelihood method: we setup the likelihood, take logs, and compute derivatives.

Extending LR to K>2 classes

1 vs All

A Quick and Dirty Intro to Multiclass Classification. This technique is the daily workhorse of modern AI/ML

Multiclass

Suppose we want to choose among k discrete values, e.g., {'Cat', 'Dog', 'Car', 'Bus'} so k = 4.

We encode with **one-hot** vectors i.e. $y \in \{0,1\}^k$ and $\sum_{j=1}^k y_j = 1$.

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$
'Cat' 'Dog' 'Car' 'Bus'

A prediction here is actually a *distribution* over the k classes. This leads to the SOFTMAX function described below (derivation in the notes!). That is our hypothesis is a vector of k values:

$$P(y = j | x; \bar{\theta}) = \frac{\exp(\theta_j^T x)}{\sum_{i=1}^k \exp(\theta_i^T x)}.$$

Here each θ_j has the same dimension as x, i.e., $x, \theta_j \in R^{d+1}$ for $j=1,\ldots,k$.

Extending Logistic Regression to K > 2 classes

Choose class K to be the "reference class" and represent each of the other classes as a logistic function of the odds of class k versus class K:

$$\log \frac{P(y=1|\mathbf{x})}{P(y=K|\mathbf{x})} = \mathbf{w}_1 \cdot \mathbf{x}$$

$$\log \frac{P(y=2|\mathbf{x})}{P(y=K|\mathbf{x})} = \mathbf{w}_2 \cdot \mathbf{x}$$

$$\vdots$$

$$\log \frac{P(y=K-1|\mathbf{x})}{P(y=K|\mathbf{x})} = \mathbf{w}_{K-1} \cdot \mathbf{x}$$

 Gradient ascent can be applied to simultaneously train all of these weight vectors
 w_k

How do we find these clusters? (Iterative Approach)

- ▶ (Randomly) Initialize Centers $\mu^{(1)}$ and $\mu^{(2)}$.
- Assign each point, $x^{(i)}$, to closest cluster

$$C^{(i)} = \underset{j=1,...,k}{\operatorname{argmin}} \|\mu^{(j)} - x^{(i)}\|^2 \text{ for } i = 1,...,n$$

► Compute new center of each cluster:

$$\mu^{(j)} = rac{1}{|\Omega_j|} \sum_{i \in \Omega_j} x^{(i)} ext{ where } \Omega_j = \{i : C^{(i)} = j\}$$

Repeat until clusters stay the same!

Different number of clusters

Different Densities

K-means++

- Steps to Initialize the Centroids Using K-Means++
- 1. The first cluster is chosen uniformly at random from the data points we want to cluster. This is similar to what we do in K-Means, but instead of randomly picking all the centroids, we just pick one centroid here
- 2.Next, we compute the distance (D(x)) of each data point (x) from the cluster center that has already been chosen
- 3. Then, choose the new cluster center from the data points with the probability of x being proportional to $(D(x))^2$
- 4.We then repeat steps 2 and 3 until k clusters have been chosen

How to Choose the Right Number of Clusters?

• Dunn index

Empirical Choice of K

Agglomerative clustering

Closest pair (single-link clustering)

Farthest pair (complete-link clustering)

[Pictures from Thorsten Joachims]

K-Nearest Neighbor Methods

 To classify a new input vector x, examine the k-closest training data points to x and assign the object to the most frequently occurring class

common values for k: 3, 5

Decision Boundaries

• The nearest neighbor algorithm does not explicitly compute decision boundaries. However, the decision boundaries form a subset of the Voronoi diagram for the training data.

1-NN Decision Surf ace

• The more examples that are stored, the more complex the decision boundaries can become

Example results for k-NN

7-Nearest Neighbors

[Figures from Hastie and Tibshirani, Chapter 13]

Practical issue when using kNN: Curse of dimensionality

#bins =
$$10x10$$

d = 2

#bins =
$$10^{d}$$
 d = 1000

Atoms in the universe: ~1080

How many neighborhoods are there?

Nearest Neighbor

When to Consider

- Instance map to points in R^n
- Less than 20 attributes per instance
- Lots of training data

Advantages

- Training is very fast
- Learn complex target functions
- Do not lose information

Disadvantages

- Slow at query time
- Easily fooled by irrelevant attributes

Summarizing Redundant Information

$$(2,1) = 1*(2,1) + 0*(2,-1)$$

 $(4,2) = 2*(2,1) + 0*(2,-1)$

(Is it the most general? These vectors aren't orthogonal)

Algorithm 37 PCA(D, K)

```
n \mu \leftarrow \text{mean}(X)
                                                                                          // compute data mean for centering
\mathbf{z} \cdot \mathbf{D} \leftarrow \left(\mathbf{X} - \mu \mathbf{1}^{\top}\right)^{\top} \left(\mathbf{X} - \mu \mathbf{1}^{\top}\right)
                                                                          \# compute covariance, \mathbf{1} is a vector of ones
_{\mathcal{F}} \{\lambda_k, u_k\} \leftarrow \text{top } K \text{ eigenvalues/eigenvectors of } \mathbf{D}
_{4} return (X - \mu 1) U
```

// project data using U

Finding PCA

There are two ways you can find PCA:

► Maximize the projected subspace of the data. (we see more)

$$\max_{u \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (u \cdot x^{(i)})^2.$$

Minimize the residual

$$\min_{u \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (x^{(i)} - u \cdot x^{(i)})^2.$$

We need to recall some more linear algebra to solve this.

More PCA

▶ Multiple Dimensions What if we want multiple dimensions? We keep the top-k.

$$\max_{U \in \mathbb{R}^{k \times d}: UU^T = I_k} \frac{1}{n} \sum_{u=1}^n ||Ux^{(i)}||^2.$$

▶ Reduce dimensionality. How do we represent data with just those k < d scalars α_j for j = 1, ..., k

$$x = \alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_d u_d$$
 keep only $(\alpha_1, \dots, \alpha_k)$

- Lurking instability: what if $\lambda_j = \lambda_{j+1}$?
- ► **Choose** *k***?** One approach is "amount of explained variance"

$$\frac{\sum_{j=1}^k \lambda_j}{\sum_{i=1}^n \lambda_i} \ge 0.9 \text{ note } \operatorname{tr}(C) = \sum_{i=1}^n C_{i,i} = \sum_{i=1}^n \lambda_i$$

Recall $\lambda_i \geq 0$ since C is a covariance matrix.

A decision tree-induced partition

The red groups are negative examples, blue positive

Choosing best attribute

- Key problem: choose attribute to split given set of examples
- Possibilities for choosing attribute:
 - -Random: Select one at random
 - **Least-values:** one with smallest # of possible values
 - -Most-values: one with largest # of possible values
 - -Max-gain: one with largest expected information gain
 - -Gini impurity: one with smallest gini impurity value
- The last two measure the homogeneity of the target variable within the subsets
- The ID3 and C4.5 algorithms uses max-gain

A Simple Example

For this data, is it better to start the tree by asking about the restaurant **type** or its current **number of patrons**?

Example	Attributes										Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

Information Gain

$$I = Info(T)$$

$$= -\sum_{c} \widehat{p_c} \log_2 \widehat{p_c}$$

$$I = -(.5*log_2(.5) + .5*log_2(.5)) = 0.5+0.5 => 1.0$$

- Information gain = 1 0.46 => **0.54**
- Information gain for asking Patrons = 0.54, for asking Type = 0
- Note: If only one of the N categories has any instances, the information entropy is always 0

Avoiding Overfitting

- Remove obviously irrelevant features
 - E.g., remove 'year observed', 'month observed', 'day observed', 'observer name' from the attributes used
- Get more training data
- Pruning lower nodes in a decision tree
 - E.g., if info. gain of best attribute at a node is below a threshold, stop and make this node a leaf rather than generating children nodes

Pruning decision trees

- Pruning a decision tree is done by replacing a whole subtree by a leaf node
- Replacement takes place if the expected error rate in the subtree is greater than in the single leaf, e.g.,
 - Training data: 1 training red success and 2 training blue failures
 - Validation data: 3 red failures and one blue success
 - Consider replacing subtree by a single node indicating failure
- After replacement, only 2 errors instead of 4

Principles for Estimating Probabilities

Principle 1 (maximum likelihood):

choose parameters θ that maximize P(data | θ)

• e.g.,
$$\hat{\theta}^{MLE} = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

Principle 2 (maximum a posteriori prob.):

- choose parameters θ that maximize P(θ | data)
- e.g.

$$\hat{\theta}^{MAP} = \frac{\alpha_1 + \#\text{hallucinated_1s}}{(\alpha_1 + \#\text{hallucinated_1s}) + (\alpha_0 + \#\text{hallucinated_0s})}$$

Maximum Likelihood Estimation

$$P(X=1) = \theta$$
 $P(X=0) = (1-\theta)$

Data D: =
$$\{ | O O | \}$$
 | $\{ | O O | \}$ | $\{ | O O | \}$

Flips produce data D with $lpha_1$ heads, $lpha_0$ tails

- flips are independent, identically distributed 1's and 0's (Bernoulli)
- α_1 and α_0 are counts that sum these outcomes (Binomial)

$$P(D|\theta) = P(\alpha_1, \alpha_0|\theta) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}$$

Maximum Likelihood Estimate for Θ

$$\widehat{ heta} = rg \max_{ heta} \ \ln P(\mathcal{D} \mid heta) \ = rg \max_{ heta} \ \ln heta^{lpha_H} (1- heta)^{lpha_T}$$

Set derivative to zero:

$$\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = 0$$

$$\hat{\theta} = \arg\max_{\theta} \ \ln P(D|\theta)$$

Set derivative to zero:

$$\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = 0$$

$$= \arg \max_{\theta} \ln \left[\theta^{\alpha_1} (1 - \theta)^{\alpha_0} \right]$$

hint:
$$\frac{\partial \ln \theta}{\partial \theta} = \frac{1}{\theta}$$

$$\frac{\partial}{\partial \theta} \propto |\ln \theta + | |\ln (|-\theta|)$$

$$\frac{1}{\theta} + | |\frac{\partial \ln (|-\theta|)}{\partial \theta} |$$

$$0 = 2 \cdot \frac{1}{10} - \frac{20}{1-0}$$

$$0 = 2 \cdot \frac{1}{1-0}$$

$$0 = 2 \cdot \frac{1}{1-0}$$

$$\frac{\partial I_{h}(I-\theta)}{\partial (I-\theta)} \cdot \frac{\partial (I-\theta)}{\partial \theta}$$

$$\frac{1}{1-\theta}$$

Summary: Maximum Likelihood Estimate

 $P(X=0) = 1-\theta$

(Bernoulli)

 \bullet Each flip yields boolean value for X

$$X \sim \text{Bernoulli: } P(X) = \theta^X (1 - \theta)^{(1 - X)}$$

• Data set D of independent, identically distributed (iid) flips produces α_1 ones, α_0 zeros (Binomial)

$$P(D|\theta) = P(\alpha_1, \alpha_0|\theta) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}$$

$$\hat{\theta}^{MLE} = \operatorname{argmax}_{\theta} P(D|\theta) = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

Principles for Estimating Probabilities

Principle 1 (maximum likelihood):

choose parameters θ that maximize
 P(data | θ)

Principle 2 (maximum a posteriori prob.):

• choose parameters θ that maximize $P(\theta \mid data) = \frac{P(data \mid \theta) P(\theta)}{P(data)}$

Beta prior distribution – $P(\theta)$

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

- Likelihood function: $P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 \theta)^{\alpha_T}$
- Posterior: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$

Beta prior distribution – $P(\theta)$

$$P(\theta) = \underbrace{\frac{\theta^{\beta_H - 1}(1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)}} \sim Beta(\beta_H, \beta_T)$$

- Likelihood function: $P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 \theta)^{\alpha_T}$
- Posterior: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$

$$\propto \beta_{H}^{+} \beta_{H}^{-1} (1-0)^{1+\beta_{+}-1}$$

$$\frac{\Lambda MAP}{\Theta} = \frac{(A_{H} + B_{H} - 1)}{(A_{H} + B_{H} - 1)} + (A_{T} + B_{T} - 1)$$

Beta prior distribution – $P(\theta)$

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

Eg. 1 Coin flip problem

Likelihood is ~ Binomial

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

If prior is Beta distribution,

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

Then posterior is Beta distribution

$$P(\theta|D) \sim Beta(\alpha_H + \beta_H, \alpha_H + \beta_H)$$

and MAP estimate is therefore

$$\hat{\theta}^{MAP} = \frac{\alpha_H + \beta_H - 1}{(\alpha_H + \beta_H - 1) + (\alpha_T + \beta_T - 1)}$$

Eg. 2 Dice roll problem (6 outcomes instead of 2)

Likelihood is
$$\sim$$
 Multinomial($\theta = \{\theta_1, \theta_2, ..., \theta_k\}$)

$$P(\mathcal{D} \mid \theta) = \theta_1^{\alpha_1} \theta_2^{\alpha_2} \dots \theta_k^{\alpha_k}$$

If prior is Dirichlet distribution,

$$P(\theta) = \frac{\theta_1^{\beta_1 - 1} \ \theta_2^{\beta_2 - 1} \dots \theta_k^{\beta_k - 1}}{B(\beta_1, \dots, \beta_k)} \sim \text{Dirichlet}(\beta_1, \dots, \beta_k)$$

Then posterior is Dirichlet distribution

$$P(\theta|D) \sim \text{Dirichlet}(\beta_1 + \alpha_1, \dots, \beta_k + \alpha_k)$$

and MAP estimate is therefore

$$\hat{\theta_i}^{MAP} = \frac{\alpha_i + \beta_i - 1}{\sum_{j=1}^k (\alpha_j + \beta_j - 1)}$$

Can we reduce params using Bayes Rule?

Suppose X =1,... X_n>
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$
 where X_i and Y are boolean RV's

How many parameters to define $P(X_1, ..., X_n \mid Y)$?

How many parameters to define P(Y)?

Can we reduce params using Bayes Rule?

Suppose X =1,... X_n>
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$
 where X_i and Y are boolean RV's

How many parameters to define $P(X_1, ..., X_n \mid Y)$?

$$P(X|Y=1)$$
 ---- 2^{n} - 1 $P(X|Y=0)$ ---- 2^{n} - 1

How many parameters to define P(Y)?

Can we reduce params using Bayes Rule?

Suppose
$$X = \langle X_1, ..., X_n \rangle$$

where X_i and Y are boolean RV's

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

Naïve Bayes

Naïve Bayes assumes

$$P(X_1 \dots X_n | Y) = \prod_i P(X_i | Y)$$

i.e., that X_i and X_j are conditionally independent given Y, for all i≠j

Naïve Bayes uses assumption that the X_i are conditionally independent, given Y

Given this assumption, then:

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$
 Chain We $= P(X_1|Y)P(X_2|Y)$ Cond. Indep.

in general:
$$P(X_1...X_n|Y) = \prod_i P(X_i|Y)$$

How many parameters to describe $P(X_1...X_n|Y)$? P(Y)?

- Without conditional indep assumption? 2(2¹-1)+1
- With conditional indep assumption?

Naïve Bayes: Subtlety #1

Often the X_i are not really conditionally independent

- We use Naïve Bayes in many cases anyway, and it often works pretty well
 - often the right classification, even when not the right probability (see [Domingos&Pazzani, 1996])
- What is effect on estimated P(Y|X)?
 - Extreme case: what if we add two copies: $X_i = X_k$

Extreme case: what if we add two copies: $X_i = X_k$

Extreme case: what if we add two copies: $X_i = X_k$

$$P(Y=y|X) \propto P(Y=y) \overline{\prod} P(X_1=x|Y=y)$$

Naïve Bayes: Subtlety #2

If unlucky, our MLE estimate for $P(X_i | Y)$ might be zero. (for example, $X_i = birthdate$. $X_i = Jan_25_1992$)

Why worry about just one parameter out of many?

What can be done to address this?

Naïve Bayes: Subtlety #2

If unlucky, our MLE estimate for $P(X_i \mid Y)$ might be zero. (e.g., X_i = Birthday_Is_January_30_1992)

Why worry about just one parameter out of many?

What can be done to address this?