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Visual version of linear regression: Learning
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Let hg(x) = Z}f:o 0;x; want to choose 6 so that hy(x) ~ y. One

popular idea called least squares
Sy = LN (0 — S0
()—2;(9@ )=y,

Choose
0 = argmin J(6).
0



Solving the least squares optimization problem.



Gradient Descent

size bedrooms lot size Price
x(1) | 2104 4 45k y) 400
x(2) | 2500 3 30k y@ | 900

What's a prediction here?

n

50) =5 3 (hox) —y)".

h(X) = 0y + O1x1 + Orx0 + O3x3. i=1
09 =0
oy =gt) aiJ(e(”) for j=0,....d.
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Gradient Descent Computation

(t+1) _ p(t) _ (t)
0; =0;" — 89J(9 ) forj=0,...,d.

Note that « is called the learning rate or step size.

Let's compute the derivatives. .
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Gradient Descent Computation

(t+1) _ p(t) _ (t)
0; =0;" — 89J(9 ) forj=0,...,d.

Note that « is called the learning rate or step size.

Let's compute the derivatives. .
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For our particular hg we have:

0
hQ(X) = Ooxp + 01x1 + -+ + O4x4 so a—ehg(X) = Xj



Gradient Descent Computation

Thus, our update rule for component j can be written:

1 ! H H I
Q}H ) — QJ(t) — ozz (he(X( )) — yl )) XJ( ).
=1



Gradient Descent Computation

Thus, our update rule for component j can be written:

1 ! H H I
QJ(H ) — QJ(t) — ozz (he(x( )) — yl )) XJ( ).
=1

We write this in vector notation for j = 0,...,d as:
o+ = ) — 0" (hg(x(i)) _ y(i)) ()
i=1

Saves us a lot of writing! And easier to understand ... eventually.



Loss Function for Classification: 0-1 Loss

0 ifysw-x>0
Ly ‘X)) =
0-1(y, W - X) {1 otherwise

Y .
Lo, = g 1
-1 o Loss
y=-1 0 1
y=1 1 0

1 [
0. ..........................................................

-1 0 1



Perceptron Loss

0 ifysw-x>0
—y*W-X otherwise

Lp(y, w - x) ={

Loss




Logistic Regression: Link Functions

Given a training set {(x(), y()) for i =1,...,n} let y() € {0,1}.
Want hg(x) € [0, 1]. Let's pick a smooth function:

ho(x) = g(8" x)
Here, g is a link function. There are many. .. but we'll pick one!

1
14+ e 2

g(z) =

0:5




Why the exp function?

1 One reason: A linear function has a range from
[—00, oo] and we need to force it to be positive

and sum to 1 in order to be a probabillity:
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Logistic Regression: Link Functions

Given a training set {(x(), y()) for i =1,...,n} let y() € {0,1}.
Want hg(x) € [0, 1]. Let’s pick a smooth function:

ho(x) = g(0" x)
Here, g is a link function. There are many. .. but we'll pick one!

1

: SIGMOID
1+ e 2

g(z) =

How do we interpret hg(x)?

Ply =11x;0) = hy(x)
Ply=0]x;0) =1— hy(x)

0:5




Logistic Regression: Link Functions

Let's write the Likelihood function. Recall:

P(y =1 x;0) =hy(x)
P(y =0 x;0) =1 — hy(x)

Then,

L) =P(y | X;0) = | [ p(y'") | x17); 6)
=1



Logistic Regression: Link Functions

Let's write the Likelihood function. Recall:

P(y =1 x;0) =hy(x)
P(y =0 x;0) =1 — hy(x)

Then,

L) =P(y | X;0) =] [ (> | x'7; )
=1

e

Conditional Distribution P(y | X)



Logistic Regression: Link Functions

Let's write the Likelihood function. Recall:

P(y = 1| x;6) =ha(x)
P(y =01 x;60) =1 — hy(x)

Then,
L(0) =P(y | X;0) = Hp (1 x;0)

How do we go to something similar to a cost function
fromP (yl X; 0)?

- Maximum Likelihood Estimation (MLE)



Logistic Regression: Link Functions

Let's write the Likelihood function. Recall:

P(y = 1| x;0) =hy(x)
P(y =0]x;0) =1— hy(x)

Then,
L(0) =P(y | X;0) = ][ p(y\" | x1); 6)
=1

— H hg(x(i))y(i)(l — hg(x(")))l_y(i) exponents encode “if-then”
i=1



Logistic Regression: Link Functions

Let's write the Likelihood function. Recall:

P(y = 1| x;0) =hy(x)
P(y =0 x;0) =1 — hy(x)

Then,
L) =P(y | X;0) = | [ p(y'") | x17); 6)
i=1
— H hg(x(i))y(i)(l — hg(x(i)))l_y(i) exponents encode “if-then”
i=1

Taking logs to compute the log likelihood ¢(8) we have:

(0) = log L(0) = zn:y(") log ho(x\) + (1 — ¥\ log(1 — he(x("))
=1



Now to solve it. ..

(0) = log L(0) = Zn:y(") log ho(x\7) + (1 — y 1)) log(1 — he(x()))
=1

We maximize for 6 but we already saw how to do this! Just
compute derivative, run (S)GD and you're done with it!

DA



Extending LR to K>2 classes
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1 vs All

Red class vs green and blue

Green class vs red and blue

Blue class vs red and green
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A Quick and Dirty Intro to Multiclass Classification.
This technique is the daily workhorse of modern Al/ML



Multiclass

Suppose we want to choose among k discrete values, e.g.,
{"Cat’,'Dog’, 'Car’,'Bus'} so k = 4.

We encode with one-hot vectors i.e. y € {0,1}* and Zjlleyj = 1.

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 1
‘Cat’ 'Dog’ ‘Car’ ‘Bus’

A prediction here is actually a distribution over the k classes. This

leads to the SOFTMAX function described below (derivation in the

notes!). That is our hypothesis is a vector of k values:

- exp(6] x)

Ply =jlxi0) = 07—
2_i—1exp(0; x)

Here each 6, has the same dimension as x, i.e., x,0; € RI*+1 for

j=1,... k.




Extending Logistic Regression to K > 2 classes

i Choose class K to be the “reference class” and
represent each of the other classes as a logistic
function of the odds of class k versus class K:

Ply=11x) _

P(y = K|x)

P(y = 2|x)
P(y = K[x)

log

log

Py =K —1|x)

log
P(y = Kx)

= WK-1-X

I Gradient ascent can be applied to
simultaneously train all of these weight vectors
Wi




How do we find these clusters? (Iterative Approach)

» (Randomly) Initialize Centers (1) and pu(2).
> Assign each point, x(), to closest cluster

C") = argmin ||p¥) — xD||2 fori=1,...,n
j=L,,k

» Compute new center of each cluster:

() — () — (i) —
W |Q|§X where Q; = {i : C\ =}

[ Repeat until clusters stay the same!




Different number of clusters

X X

Original Points K-means (k = 3)



Different Densities
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K-means++

 Steps to Initialize the Centroids Using K-Means++

1.The first cluster is chosen uniformly at random from the data points
we want to cluster. This is similar to what we do in K-Means, but
instead of randomly picking all the centroids, we just pick one
centroid here

2. Next, we compute the distance (D(x)) of each data point (x) from the
cluster center that has already been chosen

3.Then, choose the new cluster center from the data points with the
probability of x being proportional to (D(x))?

4 We then repeat steps 2 and 3 until k clusters have been chosen



How to Choose the Right Number of
Clusters?
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* Dunn index

Intra cluster distance Inter cluster distance

Clusters are far apart

min(Inter cluster distance)

Dunn Index =
max(Intra cluster distance

max(Intra cluster distance) Clusters are compact

min(Inter cluster distance)

Dunn Index =



Empirical Choice of K

number of clusters between 6 and

1000 ® 10. We can have 7, 8, or even 9
clusters.
500 Decide based on computational
© cost
= 300
()
£ 200 *
100
50 e o

2 4 6 8 10 12 14
Clusters



Agglomerative clustering

Closest pair Farthest pair
(single-link clustering) (complete-link clustering)
3 4 7 8 3 4 7 8

[Pictures from Thorsten Joachims]



K-Nearest Neighbor Methods

* To classify a new input vector x, examine the k-closest training data points to x
and assign the object to the most frequently occurring class

k=1
° ®
o )
e ® o ° o e k=5
) “
) ) )
) Q
) ®
) ) ®
o ©
o %o )

common values for k: 3, 5



Decision Boundaries

* The nearest neighbor algorithm does not explicitly compute decision
boundaries. However, the decision boundaries form a subset of the Voronoi
diagram for the training data.

I-NN Decision Surf ace

o The more examples that are stored, the more complex the decision boundaries
can become



Misclassification Errors

Example results for k-NN
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[Figures from Hastie and Tibshirani, Chapter 13]

25

30

7-Nearest Neighbors

Training Error: 0.145
Test Error: 0.225
Bayes Error:  0.210




Practical issue when using kKNN: Curse of

dimensionality
Fruit data
R #bins = 10x10
10 d — 2
£ of o = - #bins=  10°
= — T s,
s | BRI IR | d = 1000
A - afples ||  Atoms in the universe:
. | ‘ | ‘ | . ;;J;OHS ~1080
55 6 6.5 7 V':'”E(:jth (Cr:]) 8.5 9 9.5 10

How many neighborhoods are there?!




Nearest Neighbor

When to Consider
— Instance map to points in R”
— Less than 20 attributes per instance
— Lots of training data
Advantages
— Training is very fast
— Learn complex target functions
— Do not lose information
Disadvantages
— Slow at query time
— Easily fooled by irrelevant attributes



Summarizing Redundant Information

@
(4,2)
@
(2/1)
@ @
(-2,-1) (2,-1) (-2,-1) (2,-1)
u,

(2,1) =1*%(2,1) + 0*%(2,-1)
(4,2) =2*(2,1) + 0*%(2,-1)



Algorithm 37 PCA(D, K)

i f{— MEAN(X) | // compute data mean for centering
z DF & («X — 1l ) L (X - plT) {f compute covariance, 115 a vector of omes
» {Apup}  top K eigenvalues/eigenvectors of D

o return (X — 1)U /f project data using U




Finding PCA

There are two ways you can find PCA:

» Maximize the projected subspace of the data. (we see more)

n

max ! Z(u - x(2,

d n
ueRe =]

» Minimize the residual
n

min = 3 (x) — - x ()2,

d n
uelR 1

We need to recall some more linear algebra to solve this.



More PCA

» Multiple Dimensions What if we want multiple dimensions?
We keep the top-k.

1o .
max — Z | Ux (]2,
UERkXdZUUT:Ik n u—1

» Reduce dimensionality. How do we represent data with just
those k < d scalars o for j =1,... k

X = iU + ooty + - -+ aguy keep only (041, .. .,Ozk)

» Lurking instability: what if A\; = Xj 17
» Choose k? One approach is “amount of explained variance”

Zj'(:l Aj
27:1 Aj

Recall A; > 0 since C is a covariance matrix.

> 0.9 note tl’(C) = i C,",' = i)\,‘
=1 =1
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A decision tree-induced partition

"he red groups are negative examples, blue positive

Color

green red blue
|

+

Size Shape

big small square  round
/ \ N

- + +

Size

i p—

i small
big \

- +

Negative things are
big, green shapes and
big, blue squares




f

Choosing best attribute |

* Key problem: choose attribute to split given set
of examples

* Possibilities for choosing attribute:
—Random: Select one at random
—Least-values: one with smallest # of possible values
—Most-values: one with largest # of possible values
—Max-gain: one with largest expected information gain

—Gini impurity: one with smallest gini impurity value

* The last two measure the homogeneity of the
target variable within the subsets

* The ID3 and C4.5 algorithms uses max-gain


https://en.wikipedia.org/wiki/Information_gain_in_decision_trees
https://en.wikipedia.org/wiki/Decision_tree_learning

A Simple Example

For this data, is it better to start the tree by
asking about the restaurant type or its
current number of patrons?

Example Attributes Target

Alt | Bar | Fri| Hun | Pat [ Price | Rain | Res| Type | Est | Wait
X T| F F T |Some| $%$$ F T || French| 0-10 T
Xo T| F | F T | Full $ F F | Thai |30-60 F
X3 F| T | F F |Some| $ F F | Burger| 0-10 T
X4 T| F | T | T | Ful $ F F | Thai J|10-30 T
X; T| F | T F | Full | $$$ F T || French| >60 F
X F | T F T |Some| $% T T || ltalian | 0-10 T
X7 F| T | F F |None| $ T F || Burger| 0-10 F
Xs F| F | F T |Some| $% T T | Thai | 0-10 T
Xy F| T | T F | Full $ T F | Burger| >60 F
X10 T| T | T | T | Full || $3% F T || Italian | 10-30 F
X1 F F F F | None $ F F | Thai | 0-10 F
X9 T| T | T T Full $ F F || Burger | 30-60 T




stay

Information Gain @

| = Info(T)

= Zcﬁ; 1082 1/72
| =-(.5*log,(.5) + .5*log,(.5)) = 0.5+0.5 => 1.0

000000 000000
Info(X, T) 000000 000000
_ Zl% Info(T}) Patrpns? Type?
NOM\U” ancﬂmrger
000 00 (o O 00 Q0
0 _,.,; 0000 o e oo o0
1=0; P=1/6 1=1;P=1/6 1=1; P=1/6 I1=1; P=2/6 I=1; P=2/6
|=-(1/3*log,(1/3)+2/3*log,(2/3)), | =6/6%1=>1.0

P=6/12=1/2 =>0.91/2 =0.46

: : Information gain=1-1=>0.0
Information gain =1-0.46 => 0.54

* Information gain for asking Patrons = 0.54, for asking Type =0
* Note: If only one of the N categories has any instances, the information entropy is
always 0



Avoiding Overfitting

* Remove obviously irrelevant features

— E.g., remove ‘year observed’, ‘month
observed’, ‘day observed’, ‘observer
name’ from the attributes used

* Get more training data
* Pruning lower nodes in a decision tree

— E.g., if info. gain of best attribute at a node is
below a threshold, stop and make this node a
leaf rather than generating children nodes



Pruning decision trees

* Pruning a decision tree is done by replacing a whole
subtree by a leaf node

* Replacement takes place if the expected error rate in
the subtree is greater than in the single leaf, e.g.,

— Training data: 1 training red success and 2 training blue
failures
— Validation data: 3 red failures and one blue success

— Consider replacing subtree by a single node indicating failure
* After replacement, only 2 errors instead of 4

. Valid. Pruned
Training FAILURE
red blue red blue 2 success
1 success 4 failure

1 success 0O success 1 success
O failure 2 failures 3 failure 1 failure



Principles for Estimating Probabilities

Principle 1 (maximum likelihood):
* choose parameters 0 that maximize P(data | 0) .

* e.qd., NV al Q
g GMLE _ \Q\
a1+ a @x/ﬂ
S
Principle 2 (maximum a posteriori prob.): Y

* choose parameters 8 that maximize P(0 | data)

.+ eqg.
GMAP _ a1 + #hallucinated_1s
(a1 + #hallucinated_1s) + (a + #hallucinated_0Os)




Maximum Likelihood Estimation

Bx=1) =_e:l P(X=0) = (1-0)

DataD::U O O l‘& /
¢~ 4R oL

PCD\B): 9'()-9)-(1*97'5—@' — @ (/,Q) &

Flips produce data D with (x| heads, (¢ tailsj

- flips are independent, identically distributed 1's and 0’s
(Bernoulli)

« (X1 and (X are counts that sum these outcomes (Binomial)

P(D|0) = P(ay, aglf) = 6°(1 — 0)*




Maximum Likelihood Estimate for ®

" A
: 0 = arg m@ax In P(D | 0)
= arg mgax INnOH (1 — 6)T

= Set derivative to zero: 5_0_ InP(D|0) =0

[C. Guestrin]



A

H = arg meax In P(D |9) m Set derivative to zero: 5_0_ InP(D|0) =0

— arg mg),X In [9“1(1 — e)ao] hint: 8559:%
o
-3’6 g l76 + O(blw/('9>
O[\~ ,}. 02 _9’\"//"Q!
) o

22

) a/u(I—B) ‘ 09(1-@7
— — Qjo 0 (1-8) )2

0—- bLte 2 \/T\/ K%_/

\ — D
O = |
’-Oz\"\o(o




Summary:
Maximum Likelihood Estimate

P(X=1)=0
P(X=0)=1-6
(Bernoulli)

e Each flip yields boolean value for X
X ~ Bernoulli: P(X) = 6X(1 —9)0—%)

e Data set D of independent, identically distributed (iid) flips pro-
duces ay ones, oy zeros (Binomial)

P(D|0) = P(aq, apld) = 0“1 (1 — §)™0

OMLE — argmaxy P(D|f) = —.

a1+



Principles for Estimating Probabillities

Principle 1 (maximum likelihood):

* choose parameters 0 that maximize
P(data | ©)

Principle 2 (maximum a posteriori prob.):
« choose parameters 0 that maximize

P(0 | data) - P(data | 8) P(6)
P(data)




Beta prior distribution — P(6)
| 08H-1(1 — g)Br—1
B(By.Br)
m Likelihood function: P(D|60) = 6% (1 —0)°T
m Posterior: P(0 | D) o« P(D|0)P(0)

P(0) = ~ Beta(By, Br)




Beta prior distribution — P(6)
-P(O) @ 0) ~ Beta(By, Br)
B(By. ) gt
m Likelihood function: P(D|0) :@1 — )21,/
m Posterior: P(9 | D) X CFWTPTHU
A CCN) A s
A MA?
O = b))
&q—r"ﬁﬁ‘b — @{T—L"AT—D




Bata pdf

o o -~ <

16
14
12

=)
LS & (=] = .

Beta prior distribution — P(6)
93H—1(1 _ 9),;37“—1

P9) = BB, Br)

~ Beta(By, Br)

Beta(2,2) Betal3,2) 5 Beta(30,20)
15 &
4
3 -3
3 < 3
@ S
2
0 _ 0
0.2 4 0 8 1 0 0.2 04 08 8 1 0 0.2 4 0 8
paramelnr valoe paramelnr valos paramelnr valos

[C. Guestrin]



Eg. 1 Coin flip problem

Likelihood is ~ Binomial
P(D|0) =0%H(1 —0)°T
If prior is Beta distribution,
9B—1(1 — g)Br—1
BBy, Br)
Then posterior is Beta distribution
P(8|D) ~ Beta(ag + B,y + By)
and MAP estimate is therefore
éMAP _ ag + g — 1
(ag + By — 1) + (ap + fr — 1)

~ Beta(S8y, Br)

P(0) =




Eg. 2 Dice roll problem (6 outcomes instead of 2)

Likelihood is ~ Multinomial(0 = {0, 0, ..., 0,})
P(D|0) =67105%...0,*
If prior is Dirichlet distribution,
Cetert el
B(6, ..., L)
Then posterior is Dirichlet distribution
P(0|D) ~ Dirichlet(81 + a1,..., 8, + )
and MAP estimate is therefore
~ MAP o, + 5; — 1

0; -
Zj:l(&j + 6 — 1)

P(9)

~ Dirichlet(fy, . . .



Can we reduce params using Bayes Rule?

Suppose X =<X,,... X > P(X|Y)P(Y)

, P —
where X and Y are boolean RV’ s Y1X) P(X)

How many parameters to define P(X,,... X |Y)?

How many parameters to define P(Y)?



Can we reduce params using Bayes Rule?

Suppose X =<X,,... X > P(X|Y)P(Y)

, P —
where X and Y are boolean RV’ s Y1X) P(X)

How many parameters to define P(X,,... X |Y)?

How many parameters to define P(Y)?



Can we reduce params using Bayes Rule?
S X =<X,,... X > @

where X and Y are boolean RV’ s P(X)

ey e e ) (24)2

l/\au/ Wtuv\ny 1[?94 ?CY> — L



Nalve Bayes

Nalve Bayes assumes

P(X1...XalY) =[] P(X[Y)

.e., that X; and X; are conditionally
independent given Y, for all i



Naive Bayes uses assumption that the X, are conditionally
independent, given Y

Given this assumption, then:

P(X1,X2|Y) = P(X1|X2,Y)P(X2[Y) C'“;’“ e
= P(X1|Y)P(X52]Y) Cond- Tudep.

in general: P(X1...Xp|Y) = [[ P(X;]Y)
0
How many parameters to describe P(X,.. X |Y)? P(Y)?
\
»  Without conditional indep assumption? 2(2-Dt |
- With conditional indep assumption? 2%  + |



Nalve Bayes: Subtlety #1

Often the X, are not really conditionally independent

 We use Nailve Bayes in many cases anyway, and
it often works pretty well

— often the right classification, even when not the right
probability (see [Domingos&Pazzani, 1996])

« What is effect on estimated P(Y|X)?
— Extreme case: what if we add two copies: X; = X,



Extreme case: what if we add two copies: X, = X,



Extreme case: what if we add two copies: X, = X,

X, fnl‘f

P(Y=y[X) o PC=p) ] 20K \Y/)
b



Nailve Bayes: Subtlety #2

If unlucky, our MLE estimate for P(X; | Y) might be zero.
(for example, X = birthdate. X.= Jan_25 1992)

« Why worry about just one parameter out of many?

 \What can be done to address this?



Nailve Bayes: Subtlety #2

If unlucky, our MLE estimate for P(X; | Y) might be
zero. (e.g., X;= Birthday_Is_January_30_1992)

« Why worry about just one parameter out of many?

i) < F0) T RCx=1Y)

O
 \What can be done to address this?



