
1 Short Questions [20 pts]

Are the following statements True/False? Explain your reasoning in only 1
sentence.

1. Density estimation (using say, the kernel density estimator) can be used to perform
classification.

True: Estimate the joint density P (Y,X), then use it to calculate P (Y |X).

2. The correspondence between logistic regression and Gaussian Näıve Bayes (with iden-
tity class covariances) means that there is a one-to-one correspondence between the
parameters of the two classifiers.

False: Each LR model parameter corresponds to a whole set of possible GNB classifier
parameters, there is no one-to-one correspondence because logistic regression is discrimi-
native and therefore doesn’t model P (X), while GNB does model P (X).

3. The training error of 1-NN classifier is 0.

True: Each point is its own neighbor, so 1-NN classifier achieves perfect classification on
training data.

4. As the number of data points grows to infinity, the MAP estimate approaches the MLE
estimate for all possible priors. In other words, given enough data, the choice of prior
is irrelevant.

False: A simple counterexample is the prior which assigns probability 1 to a single choice
of parameter θ.

5. Cross validation can be used to select the number of iterations in boosting; this pro-
cedure may help reduce overfitting.

True: The number of iterations in boosting controls the complexity of the model, therefore,
a model selection procedure like cross validation can be used to select the appropriate
model complexity and reduce the possibility of overfitting.

6. The kernel density estimator is equivalent to performing kernel regression with the
value Yi = 1

n
at each point Xi in the original data set.

False: Kernel regression predicts the value of a point as the weighted average of the values
at nearby points, therefore if all of the points have the same value, then kernel regression
will predict a constant (in this case, 1

n ) for all values.

7. We learn a classifier f by boosting weak learners h. The functional form of f ’s decision
boundary is the same as h’s, but with different parameters. (e.g., if h was a linear
classifier, then f is also a linear classifier).

False: For example, the functional form of a decision stump is a single axis-aligned split
of the input space, but the functional form of the boosted classifier is linear combinations of
decision stumps which can form a more complex (piecewise linear) decision boundary.
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8. The depth of a learned decision tree can be larger than the number of training examples
used to create the tree.

False: Each split of the tree must correspond to at least one training example, therefore, if
there are n training examples, a path in the tree can have length at most n.

Note: There is a pathological situation in which the depth of a learned decision tree can be
larger than number of training examples n - if the number of features is larger than n and
there exist training examples which have same feature values but different labels. Points
have been given if you answered true and provided this explanation.

For the following problems, circle the correct answers:

1. Consider the following data set:

Circle all of the classifiers that will achieve zero training error on this data set. (You
may circle more than one.)

(a) Logistic regression

(b) SVM (quadratic kernel)

(c) Depth-2 ID3 decision trees

(d) 3-NN classifier

Solution: SVM (quad kernel) and Depth-2 ID3 decision trees
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2. For the following dataset, circle the classifier which has larger Leave-One-Out Cross-
validation error.

a) 1-NN

b) 3-NN

Solution: 1-NN since 1-NN CV err: 5/10, 3-NN CV err: 1/10
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6. Decision trees (10 points) 
Consider the following data set with three binary input attributes (A1, A2, and A3) and one bina-
ry output, y. 

instance A1 A2 A3 y 

1 1 0 0 0 

2 1 0 1 0 

3 0 1 0 0 

4 1 1 1 1 

5 1 1 0 1 
 

Construct a decision tree to predict y given the inputs from this data using the ID3 algorithm that 
selects the variable at each level that maximizes the information gained. 
 
7.1 What is the variable at the root of the tree. (5 pts) 
 

A2 
 
7.2 Show the entire decision tree. (5 pts) 
 

 



1 Training and Validation [8 Points]

The following figure depicts training and validation curves of a learner with increasing model complexity.

Model complexity
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1. [Points: 2 pts] Which of the curves is more likely to be the training error and which is more likely
to be the validation error? Indicate on the graph by filling the dotted lines.

2. [Points: 4 pts] In which regions of the graph are bias and variance low and high? Indicate clearly
on the graph with four labels: “low variance”, “high variance”, “low bias”, “high bias”.

3. [Points: 2 pts] In which regions does the model overfit or underfit? Indicate clearly on the graph by
labeling “overfit” and “underfit”.
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2 Bias and Variance [6 Points]

A set of data points is generated by the following process: Y = w0 +w1X +w2X
2 +w3X

3 +w4X
4 + ε, where

X is a real-valued random variable and ε is a Gaussian noise variable. You use two models to fit the data:

Model 1: Y = aX + b + ε

Model 2: Y = w0 + w1X
1 + ... + w9X

9 + ε

1. [Points: 2 pts] Model 1, when compared to Model 2 using a fixed number of training examples, has
a bias which is:

(a) Lower

(b) Higher F

(c) The Same

2. [Points: 2 pts] Model 1, when compared to Model 2 using a fixed number of training examples, has
a variance which is:

(a) Lower F

(b) Higher

(c) The Same

3. [Points: 2 pts] Given 10 training examples, which model is more likely to overfit the data?

(a) Model 1

(b) Model 2 F

F SOLUTION: Correct answers are indicated with a star next to them.
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3 Experimental design [16 Points]

For each of the listed descriptions below, circle whether the experimental set up is ok or problematic. If you
think it is problematic, briefly state all the problems with their approach:

1. [Points: 4 pts] A project team reports a low training error and claims their method is good.

(a) Ok

(b) Problematic F

F SOLUTION: Problematic because training error is an optimistic estimator of test error. Low training
error does not tell much about the generalization performance of the model. To prove that a method is
good they should report their error on independent test data.

2. [Points: 4 pts] A project team claimed great success after achieving 98 percent classification accuracy
on a binary classification task where one class is very rare (e.g., detecting fraud transactions). Their
data consisted of 50 positive examples and 5 000 negative examples.

(a) Ok

(b) Problematic F

F SOLUTION: Think of classifier which predicts everything as the majority class. The accuracy of that
classifier will be 99%. Therefore 98% accuracy is not an impressive result on such an unbalanced problem.

3. [Points: 4 pts] A project team split their data into training and test. Using their training data and
cross-validation, they chose the best parameter setting. They built a model using these parameters
and their training data, and then report their error on test data.

(a) Ok F

(b) Problematic

F SOLUTION: OK.

4. [Points: 4 pts] A project team performed a feature selection procedure on the full data and reduced
their large feature set to a smaller set. Then they split the data into test and training portions. They
built their model on training data using several different model settings, and report the the best test
error they achieved.

(a) Ok

(b) Problematic F

F SOLUTION: Problematic because:

(a) Using the full data for feature selection will leak information from the test examples into the model.
The feature selection should be done exclusively using training and validation data not on test data.

(b) The best parameter setting should not be chosen based on the test error; this has the danger of
overfitting to the test data. They should have used validation data and use the test data only in the
final evaluation step.
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4 Logistic Regression [8 Points]

Suppose you are given the following classification task: predict the target Y ∈ {0, 1} given two real valued
features X1 ∈ R and X2 ∈ R. After some training, you learn the following decision rule:

Predict Y = 1 iff w1X1 + w2X2 + w0 ≥ 0 and Y = 0 otherwise

where w1 = 3, w2 = 5, and w0 = −15.

1. [Points: 6 pts] Plot the decision boundary and label the region where we would predict Y = 1 and
Y = 0.
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F SOLUTION: See above figure.

2. [Points: 2 pts] Suppose that we learned the above weights using logistic regression. Using this model,
what would be our prediction for P (Y = 1 | X1, X2)? (You may want to use the sigmoid function
σ(x) = 1/(1 + exp(−x)).)

P (Y = 1 | X1, X2) =

F SOLUTION:

P (Y = 1 | X1, X2) =
1

1 + exp−(3X1+5X2−15)
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5 Regression with Regularization [10 Points]

You are asked to use regularized linear regression to predict the target Y ∈ R from the eight-dimensional
feature vector X ∈ R8. You define the model Y = wT X and then you recall from class the following three
objective functions:

min
w

n∑
i=1

(
yi − wT xi

)2
(5.1)

min
w

n∑
i=1

(
yi − wT xi

)2
+ λ

8∑
j=1

w2
j (5.2)

min
w

n∑
i=1

(
yi − wT xi

)2
+ λ

8∑
j=1

|wj | (5.3)

1. [Points: 2 pts] Circle regularization terms in the objective functions above.

F SOLUTION: The regularization term in 5.2 is λ
∑8

j=1 w2
j and in 5.3 is λ

∑8
j=1 |wj |.

2. [Points: 2 pts] For large values of λ in objective 5.2 the bias would:

(a) increase F

(b) decrease

(c) remain unaffected

3. [Points: 2 pts] For large values of λ in objective 5.3 the variance would:

(a) increase

(b) decrease F

(c) remain unaffected

4. [Points: 4 pts] The following table contains the weights learned for all three objective functions (not
in any particular order):

Column A Column B Column C
w1 0.60 0.38 0.50
w2 0.30 0.23 0.20
w3 -0.10 -0.02 0.00
w4 0.20 0.15 0.09
w5 0.30 0.21 0.00
w6 0.20 0.03 0.00
w7 0.02 0.04 0.00
w8 0.26 0.12 0.05

Beside each objective write the appropriate column label (A, B, or C):

• Objective 5.1: F Solution: A

• Objective 5.2: F Solution: B

• Objective 5.3: F Solution: C
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6 Controlling Overfitting [6 Points]

We studied a number of methods to control overfitting for various classifiers. Below, we list several classifiers
and actions that might affect their bias and variance. Indicate (by circling) how the bias and variance change
in response to the action:

1. [Points: 2 pts] Reduce the number of leaves in a decision tree:

F SOLUTION:

Bias Variance

Decrease Decrease F

F Increase Increase

No Change No Change

2. [Points: 2 pts] Increase k in a k-nearest neighbor classifier:

Bias Variance

Decrease Decrease F

F Increase Increase

No Change No Change

3. [Points: 2 pts] Increase the number of training examples in logistic regression:

Bias Variance

Decrease Decrease F

Increase Increase

F No Change No Change
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7 Decision Boundaries [12 Points]

The following figures depict decision boundaries of classifiers obtained from three learning algorithms: deci-
sion trees, logistic regression, and nearest neighbor classification (in some order). Beside each of the three
plots, write the name of the learning algorithm and the number of mistakes it makes on the training
data.

 
positive training examples
negative training examples

x
1

x 2

[Points: 4 pts]

Name: F Logistic regression

Number of mistakes: F 6

x
1

x 2

[Points: 4 pts]

Name: F Decision tree

Number of mistakes: F 2

x
1

x 2

[Points: 4 pts]

Name: F k-nearest neighbor

Number of mistakes: F 0
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8 k-Nearest Neighbor Classifiers [6 Points]

In Fig. 1 we depict training data and a single test point for the task of classification given two continuous
attributes X1 and X2. For each value of k, circle the label predicted by the k-nearest neighbor classifier for
the depicted test point.

x
1

x 2

 
positive training examples
negative training examples
test example

Figure 1: Nearest neighbor classification

1. [Points: 2 pts] Predicted label for k = 1:

(a) positive F (b) negative

2. [Points: 2 pts] Predicted label for k = 3:

(a) positive (b) negative F

3. [Points: 2 pts] Predicted label for k = 5:

(a) positive F (b) negative
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9 Decision Trees [16 Points]

Suppose you are given six training points (listed in Table 1) for a classification problem with two binary
attributes X1, X2, and three classes Y ∈ {1, 2, 3}. We will use a decision tree learner based on information
gain.

X1 X2 Y

1 1 1
1 1 1
1 1 2
1 0 3
0 0 2
0 0 3

Table 1: Training data for the decision tree learner.

1. [Points: 12 pts] Calculate the information gain for both X1 and X2. You can use the approximation
log2 3 ≈ 19/12. Report information gains as fractions or as decimals with the precision of three decimal
digits. Show your work and circle your final answers for IG(X1) and IG(X2).

F SOLUTION: The equation for information gain, entropy, and conditional entropy are given by (re-
spectively):

IG(X) = H(Y )− H(Y | X)

H(X) = −
∑

x

P (X = x) log2 P (X = x)

H(Y | X) =
∑

x

P (X = x)
∑

y

P (Y = y | X = x) log2 P (Y = y | X = x)

Using these equations we can derive the information gain for each split. First we compute the entropy
H(Y ):

H(Y ) = −
n=3∑
yi=1

P (Y = yi) log2 P (Y = yi)

= −
n=3∑
yi=1

1
3

log2

1
3

= log2 3 ≈ 19
12

For the X1 split we compute the conditional entropy:

H(Y | X1) = −P (X1 = 0)
n=3∑
yi=1

P (Y = yi | X1 = 0) log2 P (Y = yi | X1 = 0) +

−P (X1 = 1)
n=3∑
yi=1

P (Y = yi | X1 = 1) log2 P (Y = yi | X1 = 1)

= −
[
2
6

(
0
2

log2

0
2

+
1
2

log2

1
2

+
1
2

log2

1
2

)
+

4
6

(
2
4

log2

2
4

+
1
4

log2

1
4

+
1
4

log2

1
4

)]
= −

(
−2

6
− 1

)
=

4
3
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Similarly for the X2 split we compute the conditional entropy:

H(Y | X2) = −P (X2 = 0)
n=3∑
yi=1

P (Y = yi | X2 = 0) log2 P (Y = yi | X2 = 0) +

−P (X2 = 1)
n=3∑
yi=1

P (Y = yi | X2 = 1) log2 P (Y = yi | X2 = 1)

= −
[
3
6

(
0
3

log2

0
3

+
1
3

log2

1
3

+
2
3

log2

2
3

)
+

3
6

(
2
3

log2

2
3

+
1
3

log2

1
3

+
0
3

log2

0
3

)]
≈ −

(
2
3
− 19

12

)
=

11
12

The final information gain for each split is then:

IG(X1) = H(Y )− H(Y | X1) ≈
19
12
− 4

3
=

3
12

=
1
4

IG(X2) = H(Y )− H(Y | X2) ≈
19
12
− 11

12
=

8
12

=
2
3

2. [Points: 4 pts] Report which attribute is used for the first split. Draw the decision tree resulting
from using this split alone. Make sure to label the split attribute, which branch is which, and what
the predicted label is in each leaf. How would this tree classify an example with X1 = 0 and X2 = 1?

F SOLUTION: Since the information gain of X2 is greater than X1’s information gain, we choose to
split on X2. See the resulted decision tree in Fig. 2. An example with X1 = 0 and X2 = 1 will be classified
as Y = 1 on this tree since X2 = 1.

X2

X2=1X2=0

Y=3 Y=1

Figure 2: The decision tree for question 9.2
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3 Logistic Regression [18 pts]

We consider here a discriminative approach for solving the classification problem illustrated
in Figure 1.

Figure 1: The 2-dimensional labeled training set, where ‘+’ corresponds to class y=1 and
‘O’ corresponds to class y = 0.

1. We attempt to solve the binary classification task depicted in Figure 1 with the simple
linear logistic regression model

P (y = 1|~x, ~w) = g(w0 + w1x1 + w2x2) =
1

1 + exp(−w0 − w1x1 − w2x2)
.

Notice that the training data can be separated with zero training error with a linear
separator.

Consider training regularized linear logistic regression models where we try to maximize

n∑
i=1

log (P (yi|xi, w0, w1, w2))− Cw2
j

for very large C. The regularization penalties used in penalized conditional log-
likelihood estimation are −Cw2

j , where j = {0, 1, 2}. In other words, only one of the
parameters is regularized in each case. Given the training data in Figure 1, how does
the training error change with regularization of each parameter wj? State whether the
training error increases or stays the same (zero) for each wj for very large C. Provide
a brief justification for each of your answers.
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(a) By regularizing w2 [2 pts]

SOLUTION: Increases. When we regularize w2, the resulting boundary can rely
less and less on the value of x2 and therefore becomes more vertical. For very large C, the
training error increases as there is no good linear vertical separator of the training data.

(b) By regularizing w1 [2 pts]

SOLUTION: Remains the same. When we regularize w1, the resulting boundary
can rely less and less on the value of x1 and therefore becomes more horizontal and the
training data can be separated with zero training error with a horizontal linear separator.

(c) By regularizing w0 [2 pts]

SOLUTION: Increases. When we regularize w0, then the boundary will eventually
go through the origin (bias term set to zero). Based on the figure, we can not find a linear
boundary through the origin with zero error. The best we can get is one error.

2. If we change the form of regularization to L1-norm (absolute value) and regularize w1

and w2 only (but not w0), we get the following penalized log-likelihood

n∑
i=1

log P (yi|xi, w0, w1, w2)− C(|w1|+ |w2|).

Consider again the problem in Figure 1 and the same linear logistic regression model
P (y = 1|~x, ~w) = g(w0 + w1x1 + w2x2).

(a) [3 pts] As we increase the regularization parameter C which of the following
scenarios do you expect to observe? (Choose only one) Briefly explain your choice:

( ) First w1 will become 0, then w2.

( ) First w2 will become 0, then w1.

( ) w1 and w2 will become zero simultaneously.

( ) None of the weights will become exactly zero, only smaller as C increases.

SOLUTION: First w1 will become 0, then w2.

The data can be classified with zero training error and therefore also with high log-
probability by looking at the value of x2 alone, i.e. making w1 = 0. Initially we might
prefer to have a non-zero value for w1 but it will go to zero rather quickly as we increase
regularization. Note that we pay a regularization penalty for a non-zero value of w1 and
if it does not help classification why would we pay the penalty? Also, the absolute value
regularization ensures that w1 will indeed go to exactly zero. As C increases further,
even w2 will eventually become zero. We pay higher and higher cost for setting w2 to
a non-zero value. Eventually this cost overwhelms the gain from the log-probability of
labels that we can achieve with a non-zero w2.
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(b) [3 pts] For very large C, with the same L1-norm regularization for w1 and w2 as
above, which value(s) do you expect w0 to take? Explain briefly. (Note that the
number of points from each class is the same.) (You can give a range of values
for w0 if you deem necessary).

SOLUTION: For very large C, we argued that both w1 and w2 will go to zero. Note
that when w1 = w2 = 0, the log-probability of labels becomes a finite value, which is
equal to n log(0.5), i.e. w0 = 0. In other words, P (y = 1|~x, ~w)=P (y = 0|~x, ~w)=0.5. We
expect so because the number of elements in each class is the same and so we would
like to predict each one with the same probability, and w0=0 makes P (y = 1|~x, ~w)=0.5.

(c) [3 pts] Assume that we obtain more data points from the ‘+’ class that corre-
sponds to y=1 so that the class labels become unbalanced. Again for very large
C, with the same L1-norm regularization for w1 and w2 as above, which value(s)
do you expect w0 to take? Explain briefly. (You can give a range of values for w0

if you deem necessary).

SOLUTION: For very large C, we argued that both w1 and w2 will go to zero. With
unbalanced classes where the number of ‘+’ labels are greater than that of ‘o’ labels,
we want to have P (y = 1|~x, ~w) > P (y = 0|~x, ~w). For that to happen the value of w0

should be greater than zero which makes P (y = 1|~x, ~w) > 0.5.
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