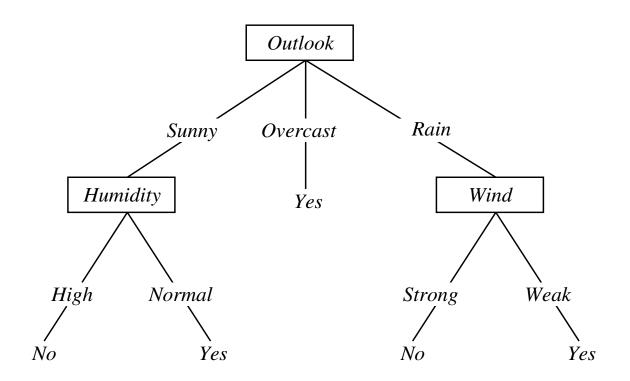
Decision Tree Learning

[read Chapter 3] [recommended exercises 3.1, 3.4]

- Decision tree representation
- ID3 learning algorithm
- Entropy, Information gain
- Overfitting



(Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong)

47

A Tree to Predict C-Section Risk

Learned from medical records of 1000 women Negative examples are C-sections

```
[833+,167-] .83+ .17-
Fetal_Presentation = 1: [822+,116-] .88+ .12-
| Previous_Csection = 0: [767+,81-] .90+ .10-
| | Primiparous = 0: [399+,13-] .97+ .03-
| | Primiparous = 1: [368+,68-] .84+ .16-
| | | Fetal_Distress = 0: [334+,47-] .88+ .12-
| | | Birth_Weight < 3349: [201+,10.6-] .95+ .05
| | | Birth_Weight >= 3349: [133+,36.4-] .78+ .2
| | | Fetal_Distress = 1: [34+,21-] .62+ .38-
| Previous_Csection = 1: [55+,35-] .61+ .39-
Fetal_Presentation = 2: [3+,29-] .11+ .89-
Fetal_Presentation = 3: [8+,22-] .27+ .73-
```

Decision Trees

Decision tree representation:

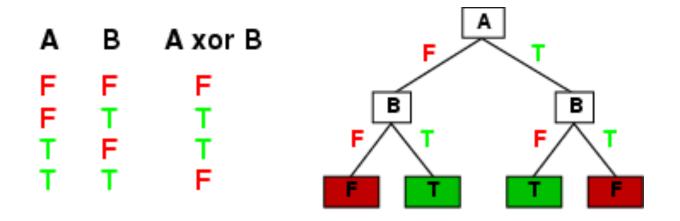
- Each internal node tests an attribute
- Each branch corresponds to attribute value
- Each leaf node assigns a classification

How would we represent:

- $\bullet \land, \lor, \operatorname{XOR}$
- $(A \land B) \lor (C \land \neg D \land E)$
- M of N

Expressiveness of Decision Trees

 Can express any function of input attributes, e.g., for Boolean functions, truth table row → path to leaf:



- There's a consistent decision tree for any training set with one path to leaf for each example, but it probably won't generalize to new examples
- Prefer more **compact** decision trees

When to Consider Decision Trees

- Instances describable by attribute-value pairs
- Target function is discrete valued
- Disjunctive hypothesis may be required
- Possibly noisy training data

Examples:

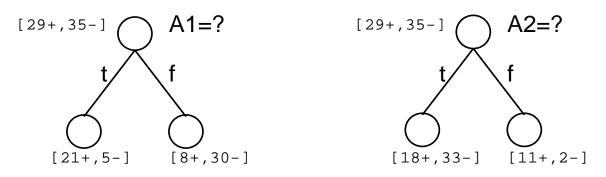
- Equipment or medical diagnosis
- Credit risk analysis
- Modeling calendar scheduling preferences

Top-Down Induction of Decision Trees

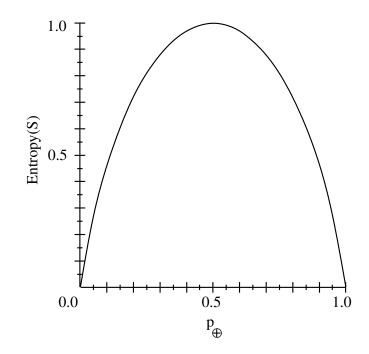
Main loop:

- 1. $A \leftarrow$ the "best" decision attribute for next *node*
- 2. Assign A as decision attribute for *node*
- 3. For each value of A, create new descendant of node
- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Which attribute is best?



Entropy



- $\bullet~S$ is a sample of training examples
- p_{\oplus} is the proportion of positive examples in S
- p_{\ominus} is the proportion of negative examples in S
- Entropy measures the impurity of S

 $Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$

Entropy

Entropy(S) = expected number of bits needed to encode class (\oplus or \ominus) of randomly drawn member of S (under the optimal, shortest-length code)

Why?

Information theory: optimal length code assigns $-\log_2 p$ bits to message having probability p.

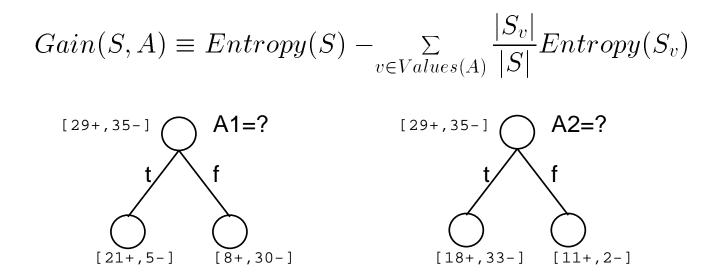
So, expected number of bits to encode \oplus or \ominus of random member of S:

$$p_\oplus(-\log_2 p_\oplus) + p_\ominus(-\log_2 p_\ominus)$$

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

Information Gain

Gain(S, A) = expected reduction in entropy due to sorting on A



Training Examples $h(\not{x}) \rightarrow \mathcal{D}$											
					¥						
	X										
Day	Outlook	Temperature	Ÿ	Wind	PlayTennis						
D1	Sunny	Hot	High	Weak	No						
D2	Sunny	Hot	High	Strong	No						
D3	Overcast	Hot	High	Weak	Yes						
D4	Rain	Mild	High	Weak	Yes						
D5	Rain	Cool	Normal	Weak	Yes						
D6	Rain	Cool	Normal	Strong	No						
D7	Overcast	Cool	Normal	Strong	Yes						
D8	Sunny	Mild	High	Weak	No						
D9	Sunny	Cool	Normal	Weak	Yes						
D10	Rain	Mild	Normal	Weak	Yes						
D11	Sunny	Mild	Normal	Strong	Yes						
D12	Overcast	Mild	High	Strong	Yes						
D13	Overcast	Hot	Normal	Weak	Yes						
D14	Rain	Mild	High	Strong	No						

Selecting the Next Attribute

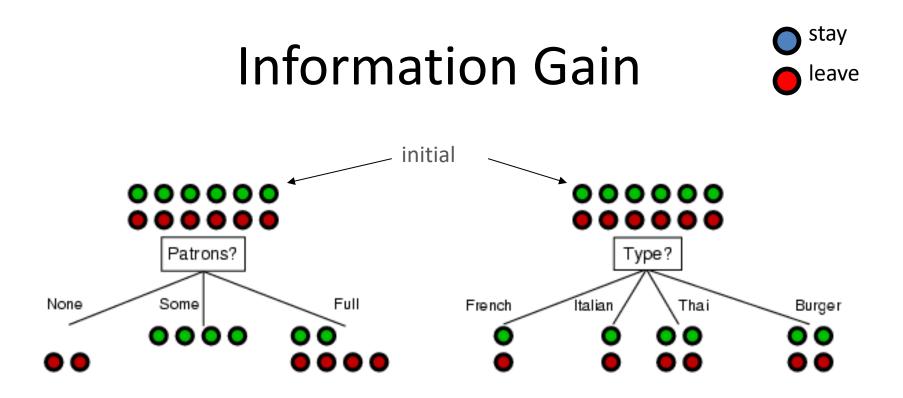
S: [9+,5-] *S*: [9+,5-] E = 0.940E = 0.940Humidity Wind High Normal Weak Strong [3+, 4-][6+,1-] [6+,2-] [3+, 3-]*E* =0.985 *E* =0.592 *E* =0.811 E = 1.00Gain (S, Humidity) Gain (S, Wind) = .940 - (7/14).985 - (7/14).592 = .940 - (8/14).811 - (6/14)1.0= .151 = .048

Which attribute is the best classifier?

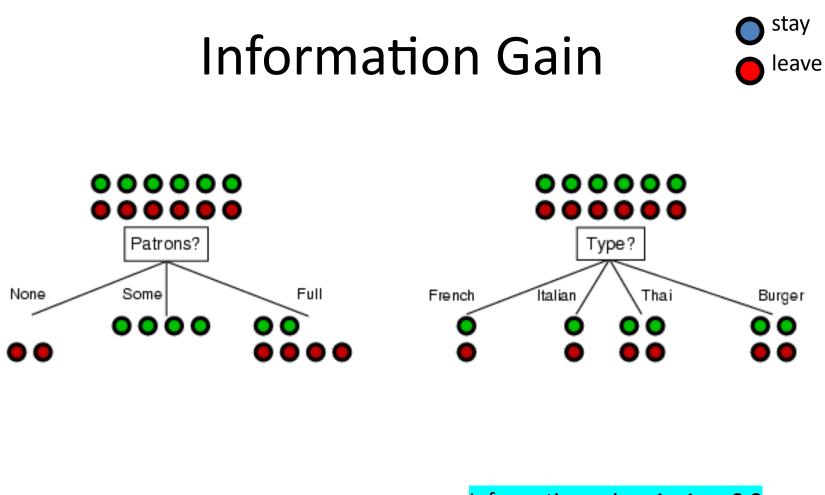
A Simple Example

For this data, is it better to start the tree by asking about the restaurant **type** or its current **number of patrons**?

Example	Attributes									Target	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	ltalian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т



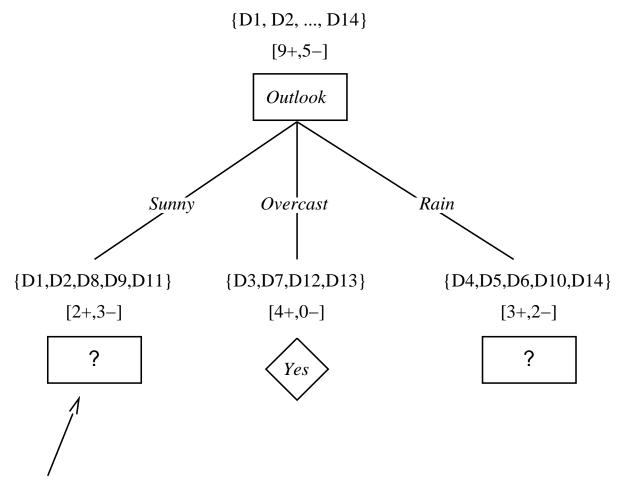
- Initially half of examples are stay and half **leave**
- After knowing Type?, still half are stay and half leave
 We are no wiser for knowing Type 😕
- After knowing Patrons?, we know the class for six and know a likely class for the other six We've learned something, but need more info if Patrons=Full ⁽²⁾



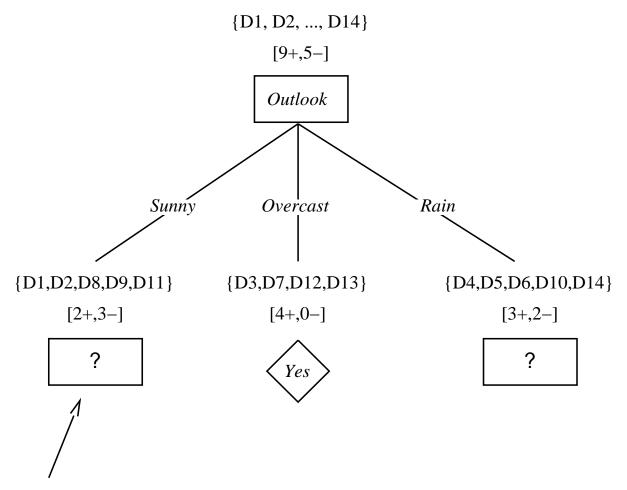
Information gain = 1 - 0.46 => **0.54**

Information gain = 1 - 1 => **0.0**

- Information gain for asking Patrons = 0.54, for asking Type = 0
- Note: If only one of the N categories has any instances, the information entropy is always 0



Which attribute should be tested here?



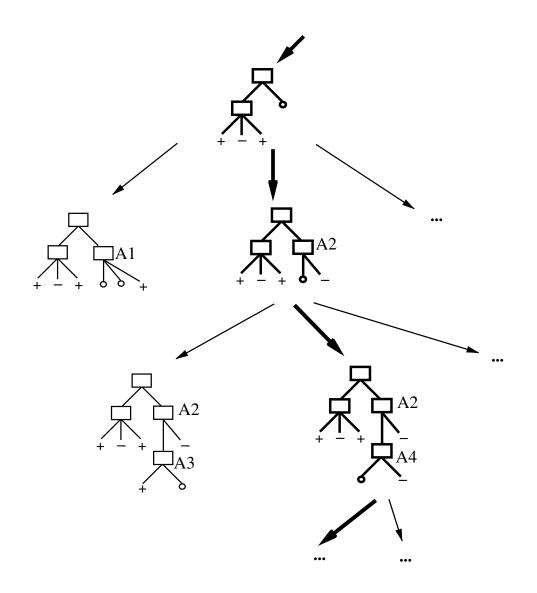
Which attribute should be tested here?

 $S_{sunny} = \{D1, D2, D8, D9, D11\}$

$$Gain (S_{sunny}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970$$

$$Gain (S_{sunny}, Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570$$

$$Gain (S_{sunny}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019$$

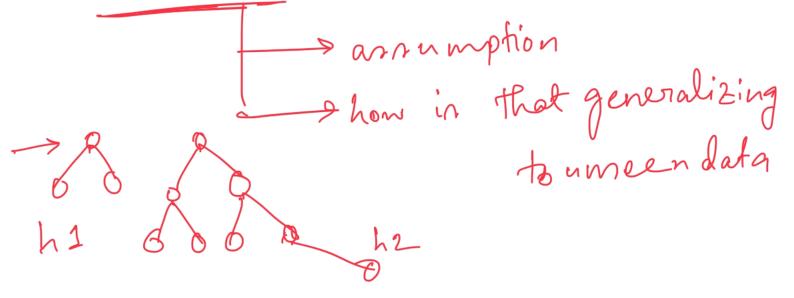


Hypothesis Space Search by ID3

- Hypothesis space is complete!
 - Target function surely in there...
- Outputs a single hypothesis (which one?)
 - Can't play 20 questions...
- No back tracking

59

- Local minima...
- Statisically-based search choices
 - Robust to noisy data...
- Inductive bias: approx "prefer shortest tree"



Inductive Bias in ID3

Note H is the power set of instances X

 \rightarrow Unbiased?

Not really...

- Preference for short trees, and for those with high information gain attributes near the root
- Bias is a *preference* for some hypotheses, rather than a *restriction* of hypothesis space H
- Occam's razor: prefer the shortest hypothesis that fits the data

Subset of search ace Drentin bio

Why prefer short hypotheses?

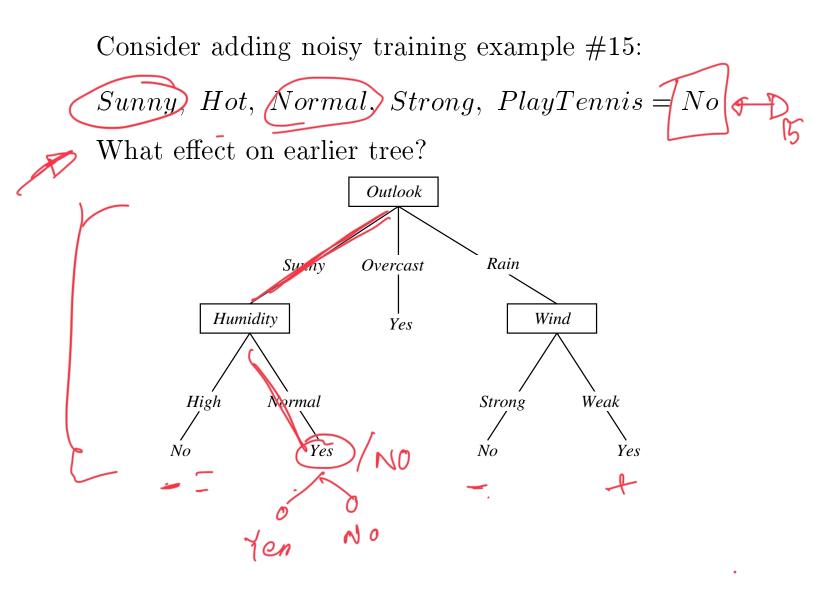
Argument in favor:

- Fewer short hyps. than long hyps.
- \rightarrow a short hyp that fits data unlikely to be coincidence
- \rightarrow a long hyp that fits data might be coincidence

Argument opposed:

- There are many ways to define small sets of hyps
- e.g., all trees with a prime number of nodes that use attributes beginning with "Z"
- What's so special about small sets based on *size* of hypothesis??

Overfitting in Decision Trees



Overfitting

Consider error of hypothesis h over

For.

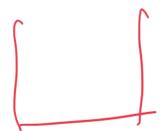
- training data: $error_{train}(h) \swarrow$
- entire distribution \mathcal{D} of data: $error_{\mathcal{D}}(h)$
- Hypothesis $h \in H$ overfits training data if there is an alternative hypothesis $h' \in H$ such that

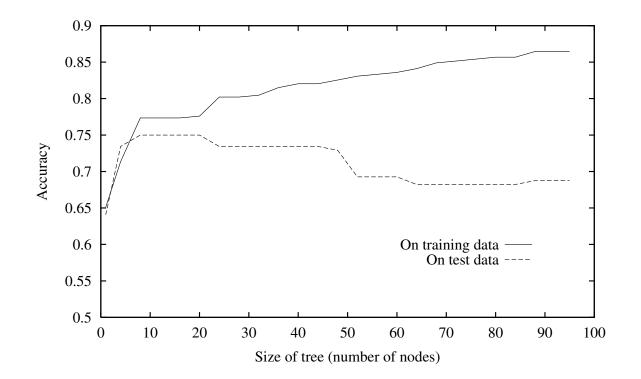
30 /
$$error_{train}(h) < error_{train}(h')$$
 50 % frain

30.1.

and

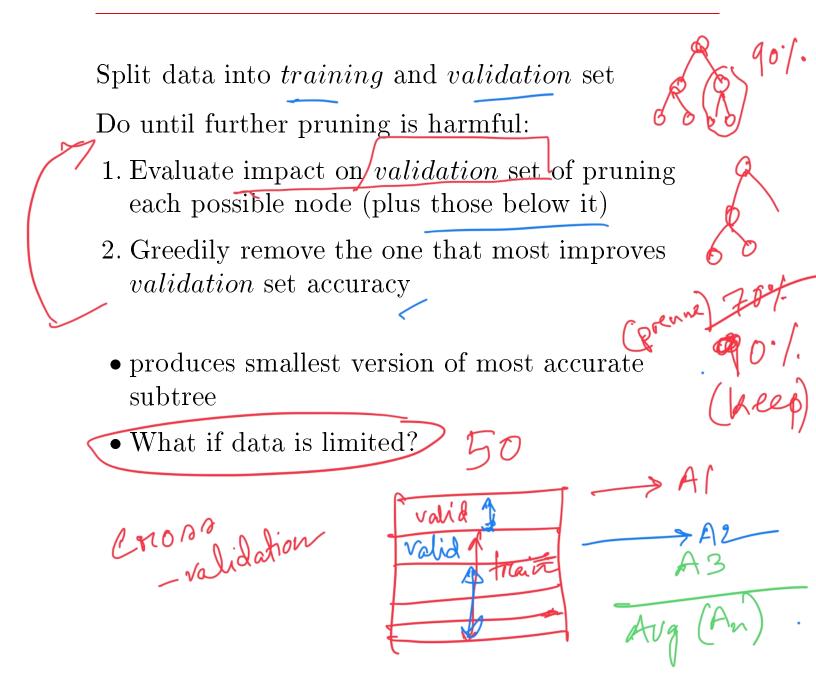
_____ $error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h')$ / entire

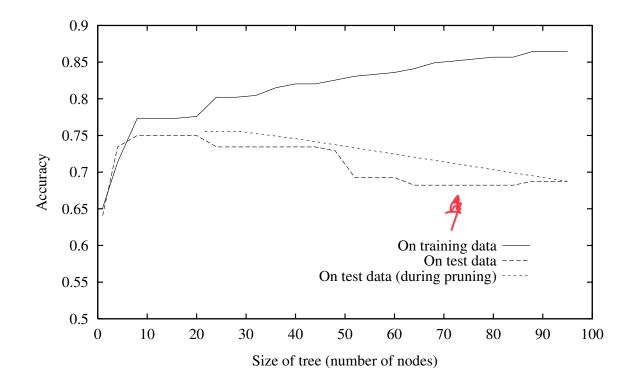




Avoiding Overfitting How can we avoid overfitting? • stop growing when data split not statistically significant • grow full tree, then post-prune How to select "best" tree: • Measure performance over training data • Measure performance over separate validation data set • MDL: minimize size(tree) + size(misclassifications(tree))vivi description tength Validation 20-

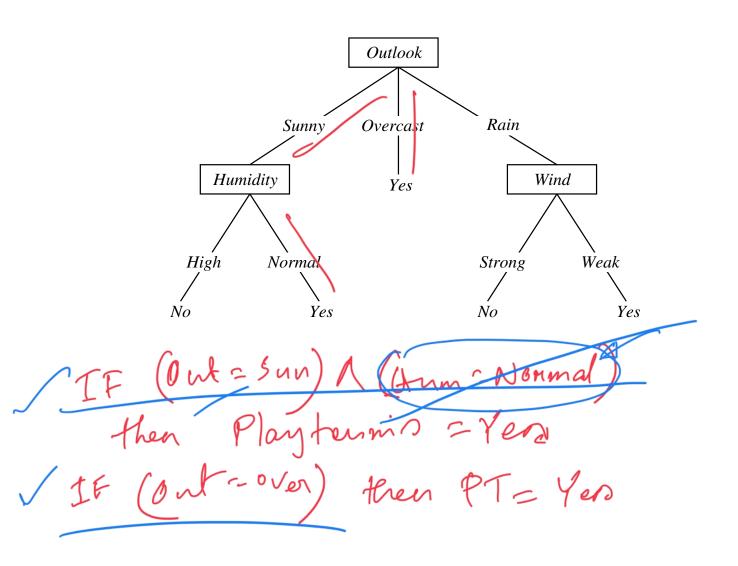
Reduced-Error Pruning





- Convert tree to equivalent set of rules
 Prune each rule independently of others
 Sort final rules into desired sequence for use

Perhaps most frequently used method (e.g., C4.5)



IF
$$(Outlook = Sunny) \land (Humidity = High)$$

THEN $PlayTennis = No$

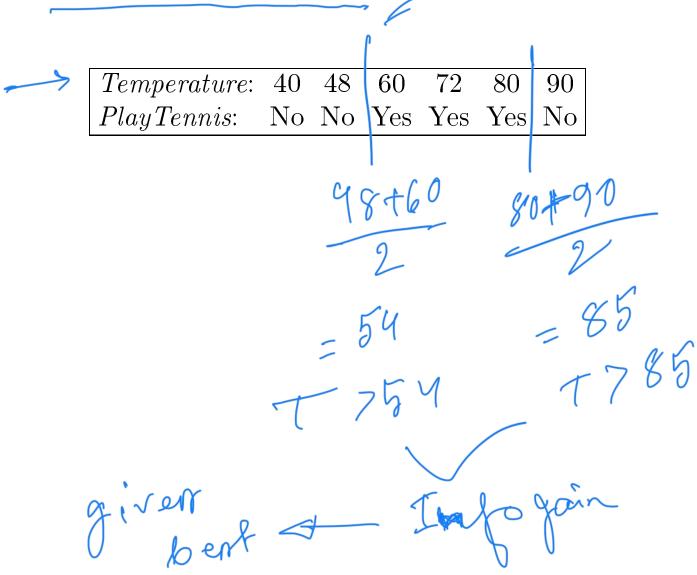
 $\begin{array}{ll} \mathrm{IF} & (Outlook = Sunny) \land (Humidity = Normal) \\ \mathrm{THEN} & PlayTennis = Yes \end{array}$

20 Inductive biar Validatie Dverfitting * Avoid overfitting - post pruning<

Continuous Valued Attributes

Create a discrete attribute to test continuous

- Temperature = 82.5
- (Temperature > 72.3) = t, f



Attributes with Many Values

Problem:

- If attribute has many values, Gain will select it
- Imagine using $Date = Jun_3_1996$ as attribute

One approach: use *GainRatio* instead

$$GainRatio(S, A) \equiv \frac{Gain(S, A)}{SplitInformation(S, A)} \blacktriangleleft$$

$$SplitInformation(S,A) \equiv -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$

where S_i is subset of S for which A has value v_i

Attributes with Costs

Consider

- \bullet medical diagnosis, BloodTest has cost \$150
- robotics, $Width_from_1ft$ has cost 23 sec.

How to learn a consistent tree with low expected cost?

One approach: replace gain by

• Tan and Schlimmer (1990)

$$\frac{Gain^2(S,A)}{Cost(A)}.$$

• Nunez (1988)

$$\frac{2^{Gain(S,A)}-1}{(Cost(A)+1)^w} \checkmark$$

where $w \in [0, 1]$ determines importance of cost

F

What if some examples missing values of A? Use training example anyway, sort through tree

- If node n tests A, assign most common value of A among other examples sorted to node n
- assign most common value of A among other examples with same target value
- assign probability p_i to each possible value v_i of A
 - assign fraction p_i of example to each descendant in tree

Classify new examples in same fashion

< sunny, 1, XXZ