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Our Tour Through Unsupervised Land

Structure Probabilistic Not Probabilistic
“Cluster” GMM k-Means
“Subspace” Factor Analysis PCA

We can impose other structures. These are popular.



Outline

Linear Algebra/Math Review

Two Methods of Dimensionality Reduction
Linear Discriminant Analysis (LDA, LDiscA)
Principal Component Analysis (PCA)



Covariance

covariance: how (linearly) correlated are variables
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Eigenvalues and Eigenvectors

𝐴𝐴𝑥𝑥 = 𝜆𝜆𝑥𝑥
matrix

vector

scalar

for a given matrix operation (multiplication):

what non-zero vector(s) change linearly? 
(by a single multiplication) 



Eigenvalues and Eigenvectors
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vector

scalar
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Eigenvalues and Eigenvectors
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Outline

Linear Algebra/Math Review

Two Methods of Dimensionality Reduction
Linear Discriminant Analysis (LDA, LDiscA)
Principal Component Analysis (PCA)



Dimensionality Reduction

Original (lightly preprocessed 
data)

Compressed 
representation

N 
instances

D input 
features

L reduced 
features



Dimensionality Reduction

clarity of representation vs. ease of understanding

oversimplification: loss of important or relevant 
information

Courtesy Antano Žilinsko



Why “maximize” the variance?

How can we efficiently summarize? We 
maximize the variance within our 

summarization

We don’t increase the variance in the dataset

How can we capture the most information with 
the fewest number of axes?



Summarizing Redundant Information

(2,1)

(2,-1)(-2,-1)

(4,2)



Summarizing Redundant Information

(2,-1)(-2,-1)

(4,2)

(2,1) = 2*(1,0) + 1*(0,1)

(2,1)



Summarizing Redundant Information

(2,1)

(2,-1)(-2,-1)

(4,2)

(2,1)

(2,-1)(-2,-1)

(4,2)

u1

u2

2u1

-u1

(2,1) = 1*(2,1) + 0*(2,-1)
(4,2) = 2*(2,1) + 0*(2,-1)



Summarizing Redundant Information

(2,1)

(2,-1)(-2,-1)

(4,2)

(2,1)

(2,-1)(-2,-1)
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u1

u2

2u1

-u1

(2,1) = 1*(2,1) + 0*(2,-1)
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(Is it the most general? These 
vectors aren’t orthogonal)



Algorithm .37 PCA (D, K)
1: p, � �:IIEAN (X) II eompule data m an for centering 
.z: D -r ( X - if'l T) T ( X - pt T} II com;pute covairian09., 1 is a vectar ol 0111 s 
:,= { Ab ·uk } +- top K eigenvalues/ ci,genvedors of D 
at= return (X - µm) U II pm.is<: data us· g U 



PCA Example: MPG

Given pairs (Highway MPG, City MPG) of some cars.

Question: What is “good” MPG?



Center the data

We center the data, i.e., as preprocessing.

x (i) 7! x (i) � µ where µ =
1

n

nX

i=1

x (i).



Finding Components

By convention, ku1k = ku2k = 1 by convention.

I u1 is the first principal component “how good is the MPG”

I u2 is the second, and roughly the di↵erence.

Recall: any point can be written in an orthogonal basis:

x = ↵1u1 + ↵2u2



Goals

I How do we find these directions?

I Some caveats about how to use these?

I Reduce dimensions: Think about D = 1000 reduced to
d = 10.



Preprocessing

Given x (1), . . . , x (n) 2 Rd we preprocess:

I Center the data x (i) 7! x (i) � µ

I Rescale the data May need to rescale components, e.g.,
“Feet per gallon” v. “Miles per Gallon”

x (i) 7! x (i) � µ

�
.

We will assume from now on that the data is preprocessed.



PCA As Optimization

How do you find the closest point to the line?

↵1 = argmin
↵

kx � ↵u1k2

= argmin
↵

kxk2 + ↵2ku1k2 � 2↵uT1 x

Then, di↵erentiate wrt ↵, set to 0, and use ku1k2, which leads to:

2↵� 2uT1 x = 0 =) ↵ = uTi x .



Generalize to higher dimensions

Suppose we have a u1, . . . , uk 2 Rd with ui · uj = �i ,j . Then,

= argmin
↵1,...,↵k2R

kx �
kX

i=1

↵iuik2

= argmin
↵1,...,↵k2R

kxk2 +
kX

i=1

↵2
i � 2↵i (ui · x)

These are k independent minimizations, so ↵i = ui · x .
I This process is also known as projecting on to the set

spanned by the vectors {u1, . . . , uk}.
I We call kx �

Pk
i=1 ↵iuik2 the residual.



Finding PCA

There are two ways you can find PCA:

I Maximize the projected subspace of the data. 	Xe see more


max
u2Rd

1

n

nX

i=1

(u · x (i))2.

I Minimize the residual 

min
u2Rd

1

n

nX

i=1

(x (i) � u · x (i))2.

We need to recall some more linear algebra to solve this.



Recall: Eigenvalue decomposition

Let A 2 Rd⇥d be symmetric (and square) then there exists
U,⇤ 2 Rd⇥d such that

A = U⇤UT in which UUT = I and ⇤ is diagonal.

I If U = [u1, . . . , ud ], UUT = I can also be written ui · uj = �i ,j .

I In this decomposition,

⇤i ,i = �i is called an eigenvalue.

and by convention, we order them �1 � �2 � · · · � �d .

I For i = 1, . . . , d , ui is the eigenvector associated with �i :

Aui = �ui since Aui = U⇤UTui = �iUei = �ui

here ei is the ith standard basis vector.



Back to PCA!

max
u2Rd :kuk2=1

1

n

nX

i=1

(u · x (i))2

We can write:

1

n

nX

i=1

(u·x (i))2 = 1

n

nX

i=1

uT x (i)(x (i))Tu = uT

0

BBBB@
1

n

nX

i=1

x (i)(x (i))T

| {z }
C

1

CCCCA
u.

C is the covariance of the data, since we subtracted the mean.

The first eigenvector of the data’s covariance matrix is the
principal component



More PCA

I Multiple Dimensions What if we want multiple dimensions?
We keep the top-k .

max
U2Rk⇥d :UUT=Ik

1

n

nX

u=1

kUx (i)k2.

I Reduce dimensionality. How do we represent data with just
those k < d scalars ↵j for j = 1, . . . , k

x = ↵1u1 + ↵2u2 + · · ·+ ↵dud keep only (↵1, . . . ,↵k)

I Lurking instability: what if �j = �j+1?

I Choose k? One approach is “amount of explained variance”
Pk

j=1 �jPn
i=1 �i

� 0.9 note tr(C ) =
nX

i=1

Ci ,i =
nX

i=1

�i

Recall �j � 0 since C is a covariance matrix.
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Recap of PCA

I Project the data onto a subspace: Find the subspace that
captures as much of the data as possible (or doesn’t explain
the least amount).

I Dimensionality reduction and visualization

I Note: The preprocessing (especially centering) featured in our
interpretation.



Independent Component Analysis



ICA: Independent Component Analysis

I The high-level story (the cocktail party problem)

I The key technical issues (on distributions) and likelihoods

I Model



Cocktail Party Problem



The Data

S (t)
j is the intensity at time t from speaker j .

We do not observe S (t) directly, only x (t) the microphones.

Our model is.
x (t)j = aj ,1S

(t)
1 + aj ,2S

(t)
2 .

“Microphone j at time t
⇣
x (t)j

⌘
receives a mixture of speaker 1 at

time t
⇣
S (t)
1

⌘
and speaker 2 at time t

⇣
S (t)
2

⌘
.”



Our Model

We can write out model succinctly as:

x (t) = As(t) for t = 1, . . . , n

I The blue values are observed: x (t).

I The red values are latent: A and s(t).

I Given x , our goal is to estimate s and A.

For simplicity, we assume number of speakers equals the number of
microphones.



More formal model

I Given: x (1), . . . , x (n) 2 Rd where d is the number of speakers
and microphones.

I Do: Find s(1), . . . , s(n) 2 Rd and A 2 Rd⇥d

x (t) = As(t).

We call A the mixing matrix and W = A�1 is the unmixing
matrix.

We write

W =

0

BBB@

wT
1

wT
2
...

wT
d

1

CCCA
so that S (t)

j = wj · x (t).
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More formal model

I Given: x (1), . . . , x (n) 2 Rd where d is the number of speakers
and microphones.

I Do: Find s(1), . . . , s(n) 2 Rd and A 2 Rd⇥d

x (t) = As(t).

Some caveats:
I We assume A does not vary with time and is full rank.

I There are inherent ambiguities:
I We can’t determine speaker id (could swap 1 and 2!)
I We can’t determine absolute intensity:

(cA)(c�1s(t)) = As(t) for any c 6= 0.

I Speakers cannot be Gaussian! Maybe surprising:

x (t) ⇠ N (µ,AAT ) then if UTU = I then AU generates same data.

Nevertheless, we can recover something meaningful–and the whole
algorithm is just MLE with gradient descent.We need one fact first.
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Now the ICA Model is MLE

Goal: write signals in terms of observed quantities:

p(s) =
dY

j=1

ps(sj) sources are iid.

p(x) =
dY

j=1

ps(wj · x) |det(W )| Use the previous slide

Technical: Use non-rotationally invariant distribution. We set

ps(x) / g 0(x) for g(x) =
1

1 + e�x
.

With this, we can solve the following with gradient descent:

`(W ) =
nX

t=1

dX

j=1

log g 0
⇣
wj · x (t)

⌘
+ log |det(W )| .



Now the ICA Model is MLE

Goal: write signals in terms of observed quantities:

p(s) =
dY

j=1

ps(sj) sources are iid.

p(x) =
dY

j=1

ps(wj · x) |det(W )| Use the previous slide

Technical: Use non-rotationally invariant distribution. We set

ps(x) / g 0(x) for g(x) =
1

1 + e�x
.

With this, we can solve the following with gradient descent:

`(W ) =
nX

t=1

dX

j=1

log g 0
⇣
wj · x (t)

⌘
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Summary of Lecture

I We saw PCA: workhorse of dimensionality reduction. The
structure was “subspaces”

I We saw ICA: Key idea for homework, and introduced this
concept of up to symmetry.



Recall: Eigenvalue decompositions

Given x 2 Rd and A = U⇤UT we can express x in the basis:

x =
dX

j=1

↵juj

As before, using ui · uj = �i ,j , we compute xTAx

= xTU⇤
dX

j=1

↵jej = xTU
dX

j=1

�j↵jej = xT

0

@
dX

j=1

�j↵juj

1

A =
dX

j=1

�j↵
2
j

Since kxk2 = xT x =
Pd

j=1 ↵
2
j = k↵k2, we can write:

max
x :kxk2=1

xTAx is equivalent to max
↵:k↵k2=1

dX

j=1

↵2
j �j .



Eigenvectors

So which x attains a maximum?

max
x :kxk2=1

xTAx is equivalent to max
↵:k↵k2=1

dX

j=1

↵2
j �j .

I Taking x = u1 works, why?
I What if �1 = �2, is it unique?

I Potential instability, when �1 is close to �2 issues can happen!



Detour: Density under linear transformations

Consider
s ⇠ Uniform[0, 1] and u = 2s.

What is the PDF of u? Tempted to write Pu(x/2) = Ps(x) – but
this is incorrect:

Ps(x) =

(
1 if x 2 [0, 1]

0 otherwise
and Pu(x) =

1

2
ps

⇣x
2

⌘
.

The key issue is the normalization constant here 1
2 .

For matrix A:

Pu(x) = ps(A
�1x)

��det(A�1)
�� = Ps(Wx) |det(W )| .

Here, det(A�1) = 1
det(A)
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