Ensembles

Key Idea: “Wisdom of the crowd”

groups of people can often make better decisions
than individuals

Apply this to ML
Learn multiple classifiers and combine their

dicti \
predictions (\/@ﬁ??rma‘ CKW/\QOW\ F()M)

@m%'wg @Mm&, XG\Y so b
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Combining Multiple Classifiers by
Voting

Train several classifiers and take majority of predictions

For regression use mean or median of the
predictions -

For ranking and collective classification use some
form of averaging /Me\jonA‘Jj «/oHVﬁ

bagging

30
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Bagging: Split the Data

Option 1: Split the data into K pieces and
train a classifier on each



Bagging: Split the Data

Q: What can go wrong

Option 1: Split the data into K pieces and with option 17
train a classifier on each A: Small sample =

poor performance
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Bagging: Split the Data

Q: What can go wrong

Option 1: Split the data into K pieces and with option 17
train a classifier on each A: Small sample >

poor performance

Option 2: Bootstrap
aggregation (bagging)
resampling

33



Bagging: Split the Data

Option 1: Split the data into K pieces and
train a classifier on each A: Small sample >

poor performance

Option 2: Bootstrap
aggregation (bagging) Given a
resampling dataset D...

Obtain datasets D1, D2, ..., Dn
using bootstrap resampling
from D

sampling with
replacement

get new datasets D by
random sampling with
replacement from D

34



Bagging: Split the Data

Option 1: Split the data into K pieces and
train a classifier on each A: Small sample >

poor performance

Option 2: Bootstrap

Train classifiers on each
dataset and average their
predictions

aggregation (bagging) Given a
resampling dataset D...
Obtain datasets D1, D2, ..., Dn - u -
using bootstrap resampling ~ sampling with —
from D replacement
N NN

get new datasets D by
random sampling with
replacement from D



Bagging: Bootstrap Aggregating

iForb=1, ..., Bdo
— S, = bootstrap replicate of S
— Apply learning algorithm to S, to learn h,

1 Classify new points by unweighted vote:
— [T hy(x))/B >0
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Bagging Decision Trees

How would it work?



Bagging Decision Trees

How would it work?
-~ Bootstrap S samples {(Xy, Y;), ..., (Xs, Y<)}
" Train a tree t. on (X, Y,)
At test time: y = avg(ti1(x) , ... ts(x)
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Bagging

1 Bagging makes predictions according to
y =2, h,(x)/B
1 Hence, bagging’s predictions are h(x)




Why does averaging work?

Averaging reduces the variance of estimators

y = f(z)+e
f(x) = Sln(;riv) | ‘f|v1lvocﬂi\el‘l‘ Or?r\_l? diduar s o)
€= N(O’ o ) .‘| " f ' wmmm \ean of All Fits
c=0.1 o5 A KA B —(x)
' i) f = = = Squared Error
50 samples
0
2
gn(T) = 0o + 6hz + 022" + ... + Opz" \
— ) -0.5 R
o Y.
g )
05| gl
— 9, 1 4 N | |
0 -1 05 0 05 1
-0.5
_11 -05 0 05 1

Averaging is a form of regularization: each model can individually overfit but the
average is able to overcome the overfitting -
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Random Forests

Bagging trees with one modification

At each split point, choose a random subset of features
of size K and pick the best among these

Train decision trees of depth d

Average results from multiple randomly trained trees



Random Forests

Bagging trees with one modification

At each split point, choose a random subset of features
of size K and pick the best among these

Train decision trees of depth d

Average results from multiple randomly trained trees

Q: What'’s the difference A: Bagging = highly

between bagging decision correlated trees (reuse good
trees and random forests? features)

40
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Bias, Variance, and Noise

1 VVariance: E[ (h(x*) — h(x*))?]

Describes how much h(x*) varies from one
training set S to another

1 Bias: [h(x*) — f(x*)]
Describes the average error of h(x™).

1 Noise: E[ (y* — f(x*))2 ] = E[¢2] = o2
Describes how much y* varies from f(x*)
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Estimated Bias and Variance of
Bagging

1 If we estimate bias and variance using the same

B bootstrap samples, we will have:

— Bias = (h—y) [same as before]
— Variance = %, (h—h)?/(K-1)=0

1 Hence, according to this approximate way of
estimating variance, bagging removes the
variance while leaving bias unchanged.

1 In reality, bagging only reduces variance and
tends to slightly increase bias
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Bias/VVariance Heuristics

1 Models that fit the data poorly have high bias:
“Inflexible models” such as linear regression,
regression stumps

1 Models that can fit the data very well have low
bias but high variance: “flexible” models such as
nearest neighbor regression, regression trees

1 This suggests that bagging of a flexible model
can reduce the variance while benefiting from
the low bias
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Decomposition over an entire
data set

1 Given a set of test points

T= {(X*1’y*1)""’ (X*n’y*n)}v
we want to decompose the average loss:

L =% E[L(h(x*), y5)1/n
1 \We will write it as
L=B+Vu-Vb

where B is the average bias, VU is the average
unbiased variance, and Vb is the average
biased variance (We ignore the noise.)

1 Vu — Vb will be called “net variance”
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Algorithms to Study

1 K-nearest neighbors: What is the effect of
K?

1 Decision trees: What is the effect of
pruning?

1 Support Vector Machines: What is the
effect of kernel width c?




K-nearest neighbor
(Domingos, 2000)

40
35 |
30 |
o5 L
20 |
15t

Loss (%)

S
7]
7]
(@]
-

1 Chess (left): Increasing K primarily reduces Vu
1 Audiology (right): Increasing K primarily
iIncreases B.
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Size of Decision Trees

Loss (%)
Loss (%)

1 Glass (left), Primary tumor (right): deeper
trees have lower B, higher Vu
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Example: 200 linear SVMs
(training sets of size 20)

Error: 13.7%
Bias: 11.7%
Vu: 5.2%
Vb: 3.2%




Example: 200 RBF SVMs

c=5

Error: 15.0%
Bias: 5.8%
Vu: 11.5%
Vb: 2.3%

True boundary
Bias=1

varlU > 0.3
varU > 0.2




Example: 200 RBF SVMs
o =50

Error: 14.9%
Bias: 10.1%
Vu: 7.8%
Vb: 3.0%

True boundary
Bias=1

varU > 0.3
varU > 0.2




SVM Bias and Variance

Error Bias Vary Varg Net var Tot var
~~ linear 0.137 0.117 0.052 0.032 0.020 0.084

rbf o =5 0.150 0.058 0.115 0.023 0.092  0.137
rbf o =50 0.149 0.101 0.078 0.030 0.048  0.109

1 Bias-Variance tradeoff controlled by o

1 Biased classifier (linear SVM) gives
better results than a classifier that can
represent the true decision boundary!
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B/V Analysis of Bagging

1 Under the bootstrap assumption,
bagging reduces only variance

— Removing Vu reduces the error rate
— Removing/Vb increases the error rate

1 Therefore, bagging should be applied to
low-bias classifiers, because then Vb will
be small

1 Reality is more complex!
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Bagging Nearest Neighbor

Bagging first-nearest
neighbor is equivalent
(in the limit) to a
weighted majority vote
In which the k-th
neighbor receives a
weight of

exp(-(k-1)) — exp(-k)
Neighbor Rank

Since the first nearest neighbor gets more than half of the vote, it will
always win this vote. Therefore, Bagging 1-NN is equivalent to 1-NN.
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Bagging Decision Trees

1 Consider unpruned trees of depth 2 on the
Glass data set. In this case, the error s
almost entirely due to bias

1 Perform 30-fold bagging (replicated 50
times; 10-fold cross-validation)

1 \What will happen?
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Bagging Primarily Reduces
Bias!

Effect of Bagging for Depth=2

Mean Error

Bias

e

Vu Unbiased Variance

Vb Biased Variance]

bagged-c4
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Questions

1|s this due to the failure of the bootstrap
assumption in bagging?
1 |s this due to the failure of the bootstrap

assumption in estimating bias and
variance?

1 Should we also think of Bagging as a
simple additive model that expands the
range of representable classifiers?




Bagging Large Trees?

1 Now consider unpruned trees of depth 10
on the Glass dataset. In this case, the
trees have much lower bias.

1 What will happen?
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Answer: Bagging Primarily

Reduces Variance

Effect of Bagging for Depth=10

\e Mean Error

+ Bias

Vu Unbiased Var

bagged-c4

dance

——= \/b Biased Variarce
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Bagging of SVMs

1 \We will choose a low-bias, high-variance
SVM to bag: RBF SVM with 6=5
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Effects of 30-fold Bagging

Error Bias Vary Varg Net var Tot var
rtbf o0 =5 0.150 0.058 0.115 0.023 0.092  0.137
bagged rbf ¢ =5 0.145 0.063 0.105 0.023 0.082  0.128

1Vu is decreased by 0.010; Vb is
unchanged

1 Bias is increased by 0.005
1 Error is reduced by 0.005




A Formal View of Boosting

e given training set (z,vy),---, (zm,ym)
ey, € {—1,+41} correct label of instance z; € X
efort=1,...,7T:
construct distribution D; on {1,... m}
find weak hypothesis (“rule of thumb”)
ht X — {—1,—|—1}
with small error ¢, on Dy:
et = Prp [hi(z;) # ;)

e output final hypothesis Hpal



AdaBoost
[Freund & Schapire]
e constructing Dy:

given D; and hy:

Dy, (i) = Dy(i) , e if y; = hy(z;)
t+1 Zt ettt if Y; # ht(xi)
Dy (i)

= -exp(—at y; he(w;))

where Z; = normalization constant

atzéln(lzjt) >0

e final hypothesis:

Hiina () = sign [~ ¢l ()
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Toy Example
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Round 1

£1=0.30
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€9=0.21



£3=0.14
@ — 05=0.92




Final Hypothesis

final

=sign| .42 +0.65 +0.92

* See demo at
www.research.att.com/ yoav/adaboost
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UCI Experiments
[Freund & Schapire]

e tested AdaBoost on UCI benchmarks

e used:

C4.5 (Quinlan’s decision tree algorithm)
“decision stumps™: very simple rules of thumb
that test on single attributes

‘ eye color = brown ? ‘ ‘ height > 5 feet ? ‘
yes k ,% H\O\
predict predict predict predict
+1 -1 -1 +1

0O 5 10 15 20 25 30 0O 5 10 15 20 25 30

boosting Stumps boosting C4.5
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Multiclass Problems
esayyeY ={1,...k}
e direct approach (AdaBoost.M1):

htIX—>Y

Dy, (i) = Dy(4) , et if y; = hy(z;)
t+1 Zt et if Y, # ht(x,&-)

Hppg(r) =argmax ¥ oy
na YeY t:hy(x)=y

e can prove same bound on error if V¢ : e, < 1/2

in practice, not usually a problem for “strong”
weak learners (e.g., C4.5)

significant problem for “weak” weak learners
(e.g., decision stumps)



Reducing to Binary Problems
[Schapire & Singer]

°ec.g.:
say possible labels are {a,b,c,d, e}
each training example replaced by five
{—1,+1}-labeled examples:

(z,2) , 1
(x,b) . —1
z,c —1{(z,c), +1
(z,d) , —1
(x,e) . —1




AdaBoost. MH

e formally:

hy: X xY — {—1,4+1}(or R)

Dy (i, y)

Dy (iy) === - exp(=ay v;(y) hy(.v))

—1 ity #y

Hﬁnal(x) — arg Iyneai)/( % O‘tht(xa y)

where v, (y)

e Cadll Prove:

1 Z

| =

training error( Hgp,q1) <



Using Output Codes

[Schapire & Singer]

e alternative: reduce to “random” binary problems

e choose “code word” for each label

T T2 73

-~ +
-+
_|__
_|_

o o o0 o o

-+

_|_

_|_

+ |2

+ 4+

e each training example mapped to one example per

column ,
(J? 7T1) , —|—1
(x 7T2) y —1
r,C — (r.my) . —1
(z,m4) , +1
e to classify new example z:
evaluate hypothesis on (z,7), ..., (z,7y)

choose label “most consistent’” with results

e training error bounds independent of # of classes

e may be more efficient for very large # of classes



Example: Boosting for Text Categorization
[Schapire & Singer]

e weak hypotheses: very simple weak hypotheses
that test on simple patterns, namely, (sparse)
n-grams

find parameter «; and rule /; of given form
which minimize Z;
use efficiently implemented exhaustive search

e “How may I help you” data:

7844 training examples (hand-transcribed)
1000 test examples (both hand-transcribed and
from speech recognizer)

categories: AreaCode, AttService, BillingCredit,
CallingCard, Collect, Competitor, DialForMe, Directory,
HowToDial, PersonToPerson, Rate, ThirdNumber, Time,
TimeCharge, Other.



Weak Hypotheses

rnd term AC AS BC CC COCMDM DI HO PP RA 3N TI TC OT
1 collect | | -
[IIY T QU II|?
IT """ "I "JI™
2 card I_'l___'_-""'
- — - g - - — - - - - - - - -
3 my home II"_-_I_"III'
4 person ? person S — - - I - -
I1 -1 | Il B
5 code B g = - - - I_
g - — - — - - - - — = = = = =
61 |- - -4 - - - - - - _ _ _ - — _
- -y - - — — = — - — - — —
7 time '__"__-_'-_ll_
____________ . w —
8 wrong number | -

how




More Weak Hypotheses

rnd term AC AS BC CC COCMDM DI HO PP RA 3N TI TC OT
10 call — e — = - = = - — - - = =
11 . om - - . - m
seven 5 - - - I -
12 trying to T L — I —
I3 and == | _ = = - o = - M o - = =
14 third - - | | _
IT-"TI"T"JI"01T T
15 to |\ _ _ _ _ _ _ e o
_________ I
16 for m - = o - - — = _ - - I -
17 charges g - - - - _ _ . I | | -
18 dial - m - _ —
ial o - - - = - - - nq
19 just U




Learning Curves

50 \\ T \" | T roTTTTTT T roTTTTTT T rToTTTTTT

45 | A conf (test) —— |

conf (train)
40 - N noconf (test) —— |

noconf (train) -
9 30 r 1
5 25 r .
= 20 W T

\n\' “\"”‘N ‘‘‘‘‘ X

15 r L T - 7
10 | S

O el L ] T T .

1 10 100 1000 10000

# rounds of boosting

e test error reaches 20% for the first time on round...

1,932 without confidence ratings
191 with confidence ratings

e test error reaches 18% for the first time on round...

10,909 without confidence ratings
303 with confidence ratings



Bias-Variance Analysis of

Boosting

1 Boosting seeks to find a weighted
combination of classifiers that fits the data
well

1 Prediction: Boosting will primarily act to
reduce bias
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Boosting DNA splice (left) and
Audiology (right)

S

O

B e ) B i I

L LA =1 I RN, =
- -y Ry Ll S b e S e SRR e e

9
-
6
5
4
3
1
0

1 | |

10 ) 10 15
Round Round

Early iterations reduce bias. Later iterations also
reduce variance




Boosting vs Bagging
(Freund & Schapire)

-1
o
=
-
=
bn
=
e
[aa]
©
w
-
g
S
m

1 1 1
10 15 20
Error rate of AdaBoost with C4




Review and Conclusions

1 For regression problems (squared error loss),
the expected error rate can be decomposed
into
— Bias(x*)? + Variance(x*) + Noise(x*)

1 For classification problems (0/1 loss), the
expected error rate depends on whether bias
IS present:

— if B(x*) = 1: B(X*) = [V(x*) + N(x*) = 2 V(x*) N(x*)]
— if B(x*) = 0: B(X*) + [V(x*) + N(x*) = 2 V(x*) N(x*)]
— or B(x*) + Vu(x*) — Vb(x*) [ignoring noise]




Review and Conclusions (2)

1 For classification problems with log loss,
the expected loss can be decomposed into
noise + bias + variance

E[ KL(y, h) ] = H(p) + KL(p, h) + E[ KL(h, h) ]




Sources of Bias and Variance

1 Bias arises when the classifier cannot
represent the true function — that is, the
classifier underfits the data

1 VVariance arises when the classifier overfits
the data

1 There Is often a tradeoff between bias and
variance




Effect of Algorithm Parameters

on Bias and Variance

1 k-nearest neighbor: increasing k typically
Increases bias and reduces variance

1 decision trees of depth D: increasing D
typically increases variance and reduces

bias
1 RBF SVM with parameter : increasing o
Increases bias and reduces variance




Effect of Bagging

1 If the bootstrap replicate approximation
were correct, then bagging would reduce
variance without changing bias

1 In practice, bagging can reduce both bias
and variance

— For high-bias classifiers, it can reduce bias
(but may increase Vu)

— For high-variance classifiers, it can reduce
variance




Effect of Boosting

1In the early iterations, boosting is primary
a bias-reducing method

1In later iterations, it appears to be primarily
a variance-reducing method






