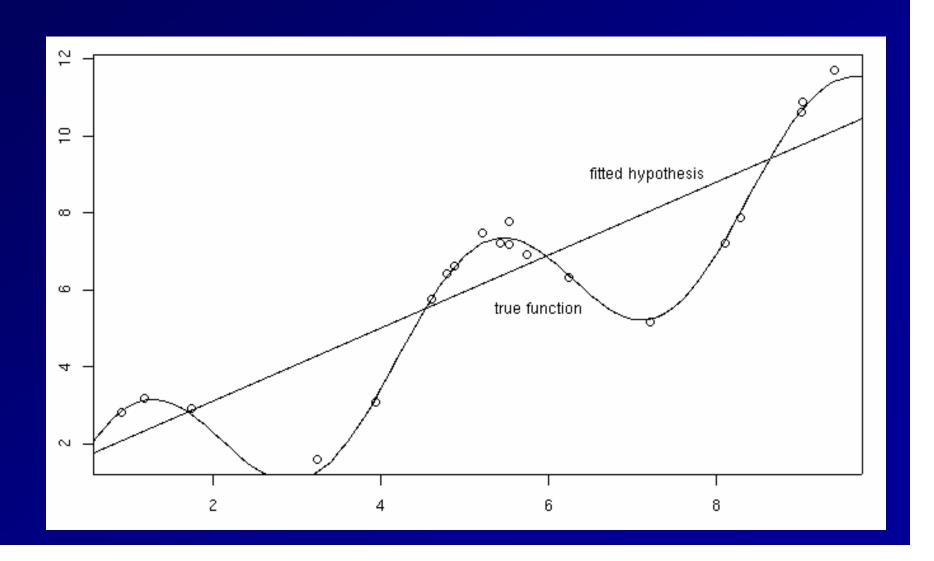
Bias-Variance Analysis in Regression

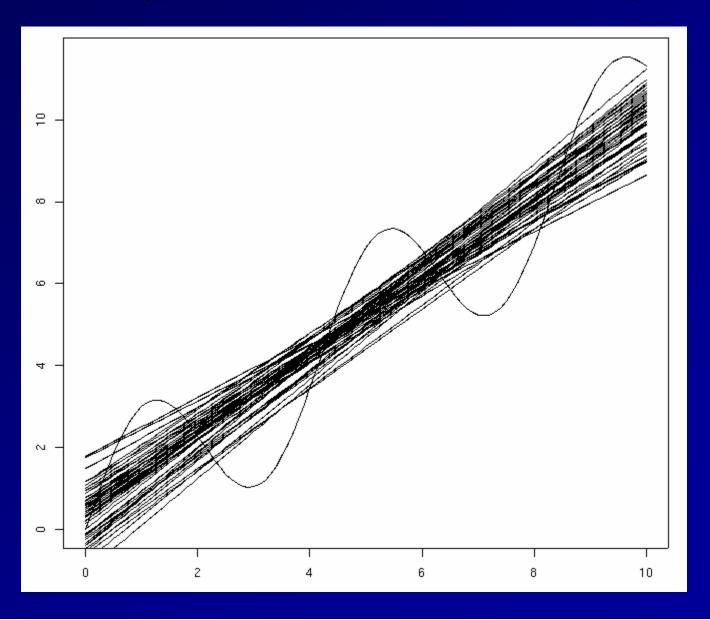
- True function is $y = f(x) + \varepsilon$
 - where ϵ is normally distributed with zero mean and standard deviation σ .
- Given a set of training examples, {(x_i, y_i)}, we fit an hypothesis h(x) = w · x + b to the data to minimize the squared error

$$\Sigma_{\rm i} [y_{\rm i} - h(x_{\rm i})]^2$$

Example: 20 points $y = x + 2 \sin(1.5x) + N(0,0.2)$



50 fits (20 examples each)



Bias-Variance Analysis

Now, given a new data point x* (with observed value y* = f(x*) + ε), we would like to understand the expected prediction error

$$E[(y^* - h(x^*))^2]$$

Classical Statistical Analysis

- Imagine that our particular training sample S is drawn from some population of possible training samples according to P(S).
- Compute E_P [$(y^* h(x^*))^2$]
- Decompose this into "bias", "variance", and "noise"

Lemma

- Let Z be a random variable with probability distribution P(Z)
- Let $\underline{Z} = E_P[Z]$ be the average value of Z.
- Lemma: $E[(Z \underline{Z})^2] = E[Z^2] \underline{Z}^2$ $E[(Z - \underline{Z})^2] = E[Z^2 - 2 Z \underline{Z} + \underline{Z}^2]$ $= E[Z^2] - 2 E[Z] \underline{Z} + \underline{Z}^2$ $= E[Z^2] - 2 \underline{Z}^2 + \underline{Z}^2$ $= E[Z^2] - \underline{Z}^2$
- Corollary: $E[Z^2] = E[(Z \underline{Z})^2] + \underline{Z}^2$

Bias-Variance-Noise Decomposition

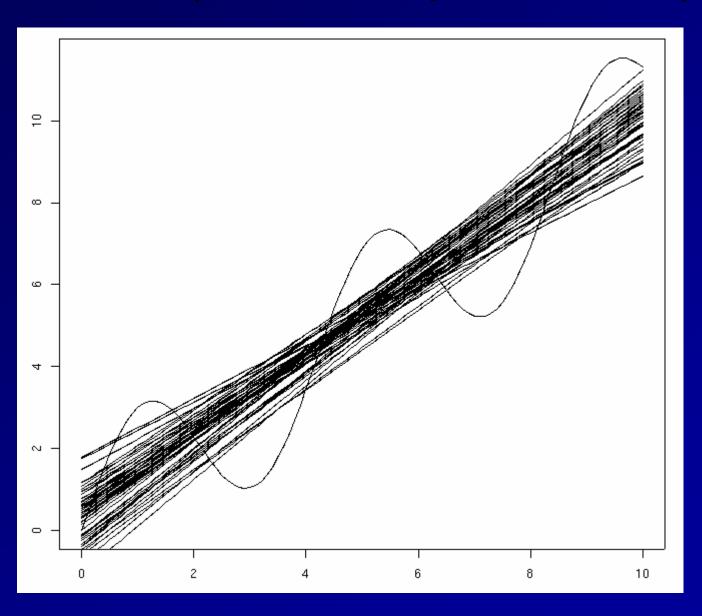
```
E[ (h(x^*) - y^*)^2 ] = E[ h(x^*)^2 - 2 h(x^*) y^* + y^{*2} ]
= E[ h(x^*)^2 ] - 2 E[ h(x^*) ] E[y^*] + E[y^{*2}]
= E[ (h(x^*) - h(x^*))^2 ] + h(x^*)^2 \quad (lemma)
- 2 h(x^*) f(x^*)
+ E[ (y^* - f(x^*))^2 ] + f(x^*)^2 \quad (lemma)
= E[ (h(x^*) - h(x^*))^2 ] + \quad [variance]
(h(x^*) - f(x^*))^2 + \quad [bias^2]
E[ (y^* - f(x^*))^2 ] \quad [noise]
```

Derivation (continued)

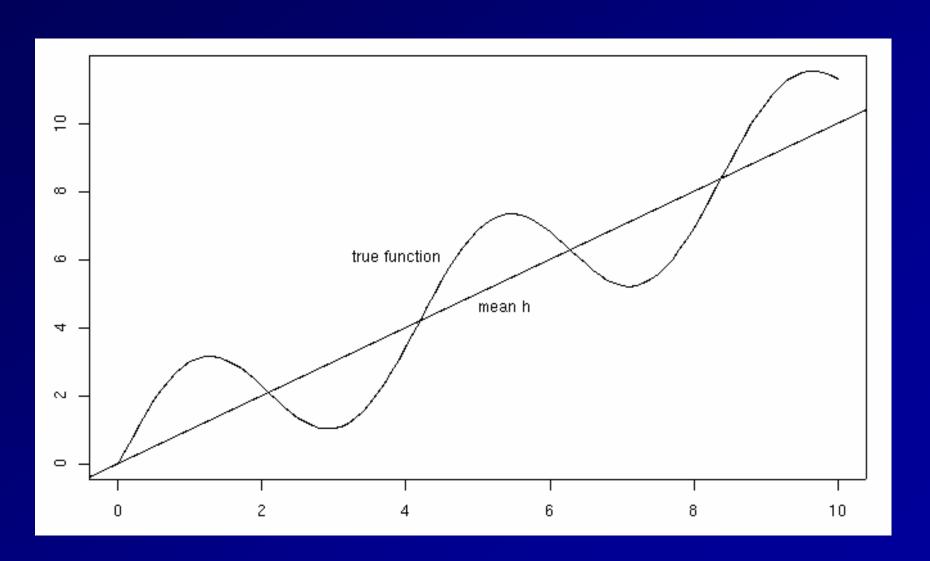
Bias, Variance, and Noise

- Variance: E[(h(x*) h(x*))²]
 Describes how much h(x*) varies from one training set S to another
- Bias: [h(x*) f(x*)]
 Describes the <u>average</u> error of h(x*).
- Noise: E[$(y^* f(x^*))^2$] = E[ε^2] = σ^2 Describes how much y^* varies from $f(x^*)$

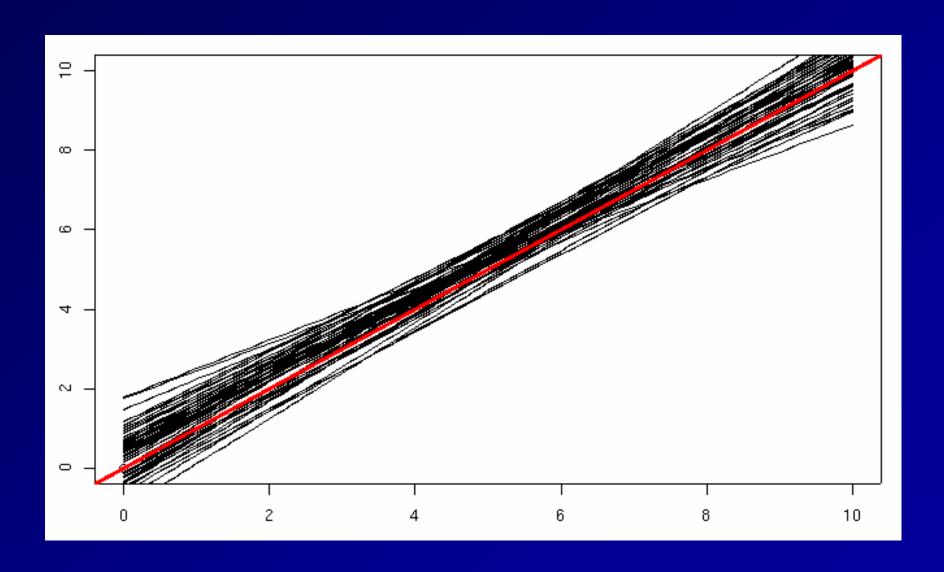
50 fits (20 examples each)



Bias



Variance



Noise

