
CMSC 478:
Reinforcement Learning

Some slides courtesy Cynthia Matuszek and Frank Farrero, with some material from Marie desJardin, Lise
Getoor, Jean-Claude Latombe, and Daphne Koller

1

Markov Decision Process:
Formalizing Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

get new state
and/or reward environment

(",$,ℛ, &, ')Markov Decision
Process:

Robot in a room

+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

Slide courtesy Peter Bodík

Goal: what’s the strategy to achieve the maximum reward?

Robot in a room
+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

states: current location
actions: where to go next

rewards

what is the solution? Learn a mapping from (state, action)
pairs to new states

Slide courtesy Peter Bodík

Markov Decision Process:
Formalizing Reinforcement Learning

(",$,ℛ, &, ')Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state !!
for t = 1 to …:
 choose action ""
 “move” to next state !" ∼ $ ⋅ !"#$, "")	
 get reward)" = 	ℛ(!", "")

'∗ = argmax
-

+ $
./0

%.&. ; '“solution”

objective: maximize
discounted reward

max
-
$
./0

%.&.

Overview: Learning Strategies

Dynamic Programming

Q-learning

Monte Carlo approaches

use value functions to structure the search for good
policies

policy evaluation: compute Vp from p
policy improvement: improve p based on Vp

start with an arbitrary policy
repeat evaluation/improvement until convergence

Dynamic programming

Slide courtesy/adapted: Peter Bodík

Optimal Policy

99

-1

+1

• A policy P is a complete mapping from states to actions
• The optimal policy P* is the one that always yields a
 history (sequence of steps ending at a terminal state)
 with maximal expected utility

2

3

1

4321

Optimal Policy

100

-1

+1

• A policy P is a complete mapping from states to actions
• The optimal policy P* is the one that always yields a
 history with maximal expected utility

2

3

1

4321

This problem is called a
Markov Decision Problem (MDP)

How to compute P*?

Defining Value Function

• Problem:
– When making a decision, we only know the

reward so far, and the possible actions
– We’ve defined value function retroactively (i.e.,

the value function/utility of a history/sequence of
states is known once we finish it)

– What is the value function of a particular state
in the middle of decision making?

– Need to compute expected value function of
possible future histories/states

101

Defining Value Function

• Problem:
– When making a decision, we only know the

reward so far, and the possible actions
– We’ve defined value function retroactively (i.e.,

the value function/utility of a history/sequence of
states is known once we finish it)

– What is the value function of a particular state
in the middle of decision making?

– Need to compute expected value function of
possible future histories/states

101

Value Iteration

• Initialize the utility of each non-terminal state
si to U0(i) = 0 } or some uniform or uniformly distributed

value
• For t = 0, 1, 2, …, do:

Ut+1(i) ßR(i) + maxaSkP(k | a.i) Ut(k)

102

-1

+1

2

3

1

4321

Value Iteration

• Initialize the utility of each non-terminal state
si to U0(i) = 0

• For t = 0, 1, 2, …, do:
Ut+1(i) ßR(i) + maxaSkP(k | a.i) Ut(k)

103

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868 ???

0.660

Value Iteration

132

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868

0.660

0.918

0.881

0.812

0.675

In (3, 3), since à action gave us the maximum expected
future reward, we choose to keep à in our policy. Same
thing was done for all states.

More
Breakdown

Value Iteration

• Initialize the utility of each non-terminal state
si to U0(i) = 0

• For t = 0, 1, 2, …, do:
Ut+1(i) ßR(i) + maxaSkP(k | a.i) Ut(k)

104

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868

0.660

EXERCISE: What is V*([3,3]) (assuming that the other V* are as shown)?

0.92

Value Iteration

• Initialize the utility of each non-terminal state
si to U0(i) = 0

• For t = 0, 1, 2, …, do:
Ut+1(i) ßR(i) + maxaSkP(k | a.i) Ut(k)

104

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868

0.660

From (3, 3), 3 options: (3, 2), (4, 3),
(3, 4) => but there is no (3,4) but wall, so
bounced off and remains at (3, 3)

EXERCISE: What is next V*([3,3]) (assuming that other V* are as shown)?

???

Value Iteration

• Initialize the utility of each non-terminal state
si to U0(i) = 0

• For t = 0, 1, 2, …, do:
Ut+1(i) ßR(i) + maxaSkP(k | a.i) Ut(k)

104

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868

0.660

V*3,3 = R3,3 +
 [P3,2 V*3,2 + P3,3 V*3,3 + P4,3 V*4,3]

From (3, 3), 3 options: (3, 2), (4, 3),
(3, 4) => but there is no (3,4) but wall, so
bounced off and remains at (3, 3)

For

Value Iteration

• Initialize the utility of each non-terminal state
si to U0(i) = 0

• For t = 0, 1, 2, …, do:
Ut+1(i) ßR(i) + maxaSkP(k | a.i) Ut(k)

104

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868

0.660

V*3,3 = R3,3 +
 [P3,2 V*3,2 + P3,3 V*3,3 + P4,3 V*4,3]
 = -0.04 +

 [0.1*0.660 + 0.1*0.92 + 0.8*1]

From (3, 3), 3 options: (3, 2), (4, 3),
(3, 4) => but there is no (3,4) but wall, so
bounced off and remains at (3, 3)

Value Iteration

• Initialize the utility of each non-terminal state
si to U0(i) = 0

• For t = 0, 1, 2, …, do:
Ut+1(i) ßR(i) + maxaSkP(k | a.i) Ut(k)

104

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868 .918

0.660

V*3,3 = R3,3 +
 [P3,2 V*3,2 + P3,3 V*3,3 + P4,3 V*4,3]
 = -0.04 +

 [0.1*0.660 + 0.1*0.92 + 0.8*1]

From (3, 3), 3 options: (3, 2), (4, 3),
(3, 4) => but there is no (3,4) but wall, so
bounced off and remains at (3, 3)

Optimal Policy

105

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868

0.660

Whichever is higher becomes
next action for (3, 1)

.918

Optimal Policy

105

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868 .918

0.660

$*3,1 being (ß) =
Pup V*2,1 + Pleft V*3,1 (Bounced off) + Pright V*3,2

= 0.8 * 0.655 + 0.1 * 0.611 + 0.1 * 0.66

Whichever is higher becomes
next action for (3, 1)

Optimal Policy

105

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868 .918

0.660

$*3,1 being (ß) =
Pup V*2,1 + Pleft V*3,1 (Bounced off) + Pright V*3,2

= 0.8 * 0.655 + 0.1 * 0.611 + 0.1 * 0.66

$*3,1 being (↑) =
Pup V*3,2 + Pleft V*2,1 + Pright V*1,4

Whichever is higher becomes
next action for (3, 1)

Policy Iteration

• Pick a policy P at random
• Repeat:
– Compute Value function of each state for P

– Compute the policy P’ given these value
functions

– If P’ = P then return P

109

Policy Iteration

• Pick a policy P at random
• Repeat:
– Compute Value function of each state for P

– Compute the policy P’ given these value
functions

– If P’ = P then return P

109

Or solve the set of linear equations:
(often a sparse system)

Value Iteration: Summary

– Initialize state values (expected utilities)
randomly

– Repeatedly update state values using best
action, according to current approximation of
state values

– Terminate when state values stabilize
– Resulting policy will be the best policy because

it’s based on accurate state value estimation

112

Policy Iteration: Summary
– Initialize policy randomly
– Repeatedly update state values using best action,
according to current approximation of state values
– Then update policy based on new state values
– Terminate when policy stabilizes
– Resulting policy is the best policy, but state values
may not be accurate (may not have converged yet)
– Policy iteration is often faster (because we don’t
have to get the state values right)
• Both methods have a major weakness: They require us to

know the transition function exactly in advance!

113

Infinite Horizon

111

-1

+1

2

3

1

4321

In many problems, e.g., the robot
navigation example, histories are
potentially unbounded and the same
state can be reached many times

Advanced
topic

Infinite Horizon

111

-1

+1

2

3

1

4321

In many problems, e.g., the robot
navigation example, histories are
potentially unbounded and the same
state can be reached many times

What if the robot lives forever?

Advanced
topic

Infinite Horizon

111

-1

+1

2

3

1

4321

In many problems, e.g., the robot
navigation example, histories are
potentially unbounded and the same
state can be reached many times

One trick:
Use discounting to make an infinite
horizon problem mathematically
tractable

What if the robot lives forever?

Advanced
topic

Exploration vs. Exploitation

• Problem with naïve reinforcement learning:
– What action to take?
– Best apparent action, based

on learning to date
• Greedy strategy
• Often prematurely converges to a suboptimal policy!

– Random (or unknown) action
• Will cover entire state space
• Very expensive and slow to learn!
• When to stop being random?

– Balance exploration (try random actions) with
exploitation (use best action so far)

} Exploitation

} Exploration

More on Exploration
• Agent may sometimes choose to explore suboptimal

moves in hopes of finding better outcomes
– Only by visiting all states frequently enough can we

guarantee learning the true values of all the states
• When the agent is learning, ideal would be to get

accurate values for all states
– Even though that may mean getting a negative outcome

• When agent is performing, ideal would be to get
optimal outcome

• A learning agent should have an exploration policy

124

Exploration Policy
• Wacky approach (exploration): act randomly in hopes

of eventually exploring entire environment
– Choose any legal checkers move

• Greedy approach (exploitation): act to maximize utility
using current estimate
– Choose moves that have in the past led to wins

• Reasonable balance: act more wacky (exploratory)
when agent has little idea of environment; more
greedy when the model is close to correct
– Suppose you know no checkers strategy?
– What’s the best way to get better?

125

Maintaining exploration
key ingredient of RL

deterministic/greedy policy won’t explore all actions
don’t know anything about the environment at the beginning
need to try all actions to find the optimal one

maintain exploration
use soft policies instead: p(s,a)>0 (for all s,a)

ε-greedy policy
with probability 1-ε perform the optimal/greedy action
with probability ε perform a random action

will keep exploring the environment
slowly move it towards greedy policy: ε -> 0

Slide courtesy/adapted: Peter Bodík

Overview: Learning Strategies

Dynamic Programming

Q-learning

Monte Carlo approaches

Q-learning

*: ,, - → ℝ
Goal: learn a function that

computes a “goodness” score
for taking a particular action !

in state "

Q-learning
previous algorithms: on-policy algorithms

start with a random policy, iteratively improve
converge to optimal

Q-learning: off-policy
use any policy to estimate Q

Q directly approximates Q* (Bellman optimality equation)
independent of the policy being followed
only requirement: keep updating each (s,a) pair

Slide courtesy/adapted: Peter Bodík

Q-learning
previous algorithms: on-policy algorithms
– start with a random policy, iteratively improve
– converge to optimal

Q-learning: off-policy
– use any policy to estimate Q

– Q directly approximates Q* (Bellman optimality equation)
– independent of the policy being followed
– only requirement: keep updating each (s,a) pair

Slide courtesy/adapted: Peter Bodík

R(st)

Learning rate,
can be constant
or a function

Deep/Neural Q-learning

* ,, -; 1 ≈ *∗(,, -)
desired optimal solutionneural network

Deep/Neural Q-learning

* ,, -; 1 ≈ *∗(,, -)
desired optimal solutionneural network

Approach: Form (and learn)
a neural network to model

our optimal Q function

Deep/Neural Q-learning

* ,, -; 1 ≈ *∗(,, -)
desired optimal solutionneural network

Approach: Form (and learn)
a neural network to model

our optimal Q function

Learn weights
(parameters) 4 of our

neural network

Overview: Learning Strategies

Dynamic Programming

Q-learning

Monte Carlo approaches

Monte Carlo policy evaluation

want to estimate Vp(s)don’t need full
knowledge of

environment (just
(simulated) experience)

Slide courtesy/adapted: Peter Bodík

Monte Carlo policy evaluation
want to estimate Vp(s)

expected return starting from s
and following p

estimate as average of
observed returns in state s

s0
s s

+1 -2 0 +1 -3 +5
R1(s) = +2

s0
s0
s0
s0
s0

R2(s) = +1
R3(s) = -5

R4(s) = +4

Vp(s) ≈ (2 + 1 – 5 + 4)/4 = 0.5

don’t need full
knowledge of

environment (just
(simulated) experience)

Slide courtesy/adapted: Peter Bodík

RL Summary 1:

• Reinforcement learning systems
– Learn series of actions or decisions, rather than a

single decision
– Based on feedback given at the end of the series

• A reinforcement learner has
– A goal
– Carries out trial-and-error search
– Finds the best paths toward that goal

137

RL Summary 2:

• A typical reinforcement learning system is an
active agent, interacting with its environment.

• It must balance:
– Exploration: trying different actions and sequences of

actions to discover which ones work best
– Exploitation (achievement): using sequences which

have worked well so far
• Must learn successful sequences of actions in an

uncertain environment

138

RL Summary 3

• Very hot area of research at the moment
• There are many more sophisticated RL

algorithms
– Most notably: probabilistic approaches

• Applicable to game-playing, search, finance,
robot control, driving, scheduling, diagnosis, …

139

EXTRA SLIDES

140

Utility Function

141

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape

-1

+1

2

3

1

4321

Utility Function

142

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries

-1

+1

2

3

1

4321

Utility Function

143

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] and [4,2] are terminal states

-1

+1

2

3

1

4321

Utility Function

144

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] and [4,2] are terminal states
• Histories have utility!

-1

+1

2

3

1

4321

Utility of a History

145

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] or [4,2] are terminal states
• Histories have utility!
• The utility of a history is defined by the utility of the last
 state (+1 or –1) minus n/25, where n is the number of moves

• Many utility functions possible, for many kinds of problems.

-1

+1

2

3

1

4321

Utility of an Action Sequence

146

-1

+1

2

3

1

4321

• Consider the action sequence (U,R) from [3,2]

Utility of an Action Sequence

147

-1

+1

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability

Utility of an Action Sequence

148

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability
• The utility of the sequence is the expected utility of the histories:
 U = ShUh P(h)

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

Optimal Action Sequence

149

-1

+1

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability
• The utility of the sequence is the expected utility of the histories:
 U = ShUh P(h)
• The optimal sequence is the one with maximal utility

Optimal Action Sequence

150

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability
• The utility of the sequence is the expected utility of the histories
• The optimal sequence is the one with maximal utility
• But is the optimal action sequence what we want to
 compute?

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

Optimal Action Sequence

151

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability
• The utility of the sequence is the expected utility of the histories
• The optimal sequence is the one with maximal utility
• But is the optimal action sequence what we want to
 compute?

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

only if the sequence is executed blindly!

