
CMSC 478: 
Reinforcement 

Learning

Some slides courtesy Cynthia Matuszek and Frank Farrero, with some material from Marie desJardin, Lise 
Getoor, Jean-Claude Latombe, and Daphne Koller
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There’s an entire book!

http://incompleteideas.
net/book/the-book-

2nd.html 

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html


The Big Idea

• “Planning”: Find a sequence of steps to 
accomplish a goal.
– Given start state, transition model, goal functions…

• This is a kind of sequential decision making.
– Transitions are deterministic.

• What if they are stochastic (probabilistic)?
– One time in ten, you drop your sock

• Probabilistic Planning: Make a plan that accounts 
for probability by carrying it through the plan.
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Review: Formalizing Agents

• Given:
– A state space S
– A set of actions a1, …, ak including their results
– Reward value at the end of each trial (series of 

action) (may be positive or negative)
• Output:
– A mapping from states to actions
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Review: Formalizing Agents

• Given:
– A state space S
– A set of actions a1, …, ak including their results
– Reward value at the end of each trial (series of 

action) (may be positive or negative)
• Output:
– A mapping from states to actions
– Which is a policy, π
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Reinforcement Learning
• We often have an agent which has a task to 

perform
– It takes some actions in the world
– At some later point, gets feedback on how well it did 
– The agent performs the same task repeatedly

• This problem is called reinforcement learning: 
– The agent gets positive reinforcement for tasks done 

well
– And gets negative reinforcement for tasks done poorly
– Must somehow figure out which actions to take next 

time
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Reinforcement Learning

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg
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Simple Robot Navigation Problem
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• In each state, the possible actions are U, D, R, and L



Probabilistic Transition Model
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• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the 
   robot is already in the top row, then it does not move)
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• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the 
   robot is already in the top row, then it does not move)
• With probability 0.1, the robot moves right one square (if the
   robot is already in the rightmost row, then it does not move)



Probabilistic Transition Model
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• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the 
   robot is already in the top row, then it does not move)
• With probability 0.1, the robot moves right one square (if the
   robot is already in the rightmost row, then it does not move)
• With probability 0.1, the robot moves left one square (if the
   robot is already in the leftmost row, then it does not move)



Markov Property
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The transition properties depend only 
on the current state, not on the previous 
history (how that state was reached) 

Markov assumption generally: current state only ever 
depends on previous state (or finite set of previous 
states).
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Robot in a room

+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

Slide courtesy Peter Bodík

Goal: what’s the strategy to achieve the maximum reward?



Robot in a room
+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

states: current location
actions: where to go next

rewards

what is the solution? Learn a mapping from (state, action) 
pairs to new states

Slide courtesy Peter Bodík
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Example of Discounted Reward
• If the discount factor ! =
0.8 then reward

0.8!&! +
 0.8"&" + 0.8#&# +
	0.8$&$ +⋯+ 0.8%&% +	…
• Allows you to consider all 

possible rewards in the 
future but preferring 
current vs. future self

44

objective: maximize 
discounted reward

max
!
$
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The expectation is over the 
different states 𝑠! the agent 
could be in at time t (equiv. 

actions the agent could take).



Simple Example

• Learn to play checkers
– Two-person game
– 8x8 boards, 12 

checkers/side
– relatively simple set of 

rules:
http://www.darkfish.co
m/checkers/rules.html

– Goal is to eliminate all 
your opponent’s pieces

https://pixabay.com/en/checker-board-black-game-pattern-29911

http://www.darkfish.com/checkers/rules.html
http://www.darkfish.com/checkers/rules.html


Some Challenges

1. Representing states (and actions)

2. Defining our reward

3. Learning our policy
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Overview: Learning Strategies

Dynamic Programming

Q-learning

Monte Carlo approaches



Accessible or
observable stateRepeat:

w s ß sensed state
w If s is a terminal state then exit
w a ß choose action (given s)
w Perform a

Reactive Agent Algorithm
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Policy (Reactive/Closed-Loop Strategy)
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• In every state, we need to know what to do
• The goal doesn’t change 
• A policy (P) is a complete mapping from 
  states to actions

• “If in [3,2], go up; if in [3,1], go left; if in…”

-1

+1

2

3

1

4321



Optimal Policy
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-1

+1

• A policy P is a complete mapping from states to actions
• The optimal policy P* is the one that always yields a 
   history (sequence of steps ending at a terminal state) 
   with maximal expected utility

2

3

1

4321
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-1

+1

• A policy P is a complete mapping from states to actions
• The optimal policy P* is the one that always yields a 
   history with maximal expected utility

2

3

1

4321

This problem is called a
Markov Decision Problem (MDP)

How to compute P*?



Defining Value Function
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use value functions to structure the search for good 
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Dynamic programming
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use value functions to structure the search for good 
policies

policy evaluation: compute Vp from p
policy improvement: improve p based on Vp

start with an arbitrary policy
repeat evaluation/improvement until convergence

Dynamic programming

Slide courtesy/adapted: Peter Bodík


