
CMSC 478:
Reinforcement

Learning

Some slides courtesy Cynthia Matuszek and Frank Farrero, with some material from Marie desJardin, Lise
Getoor, Jean-Claude Latombe, and Daphne Koller

1

There’s an entire book!

http://incompleteideas.
net/book/the-book-

2nd.html

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html

The Big Idea

• “Planning”: Find a sequence of steps to
accomplish a goal.
– Given start state, transition model, goal functions…

• This is a kind of sequential decision making.
– Transitions are deterministic.

• What if they are stochastic (probabilistic)?
– One time in ten, you drop your sock

• Probabilistic Planning: Make a plan that accounts
for probability by carrying it through the plan.

3

Review: Formalizing Agents

• Given:
– A state space S
– A set of actions a1, …, ak including their results
– Reward value at the end of each trial (series of

action) (may be positive or negative)
• Output:
– A mapping from states to actions

4

Review: Formalizing Agents

• Given:
– A state space S
– A set of actions a1, …, ak including their results
– Reward value at the end of each trial (series of

action) (may be positive or negative)
• Output:
– A mapping from states to actions
– Which is a policy, π

4

Reinforcement Learning
• We often have an agent which has a task to

perform
– It takes some actions in the world
– At some later point, gets feedback on how well it did
– The agent performs the same task repeatedly

• This problem is called reinforcement learning:
– The agent gets positive reinforcement for tasks done

well
– And gets negative reinforcement for tasks done poorly
– Must somehow figure out which actions to take next

time

5

Reinforcement Learning

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

environment

Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

environment

Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

get new state
and/or reward environment

Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

get new state
and/or reward environment

Simple Robot Navigation Problem

10

• In each state, the possible actions are U, D, R, and L

Probabilistic Transition Model

11

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the
 robot is already in the top row, then it does not move)

Probabilistic Transition Model

12

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the
 robot is already in the top row, then it does not move)
• With probability 0.1, the robot moves right one square (if the
 robot is already in the rightmost row, then it does not move)

Probabilistic Transition Model

13

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the
 robot is already in the top row, then it does not move)
• With probability 0.1, the robot moves right one square (if the
 robot is already in the rightmost row, then it does not move)
• With probability 0.1, the robot moves left one square (if the
 robot is already in the leftmost row, then it does not move)

Markov Property

15

The transition properties depend only
on the current state, not on the previous
history (how that state was reached)

Markov assumption generally: current state only ever
depends on previous state (or finite set of previous
states).

Markov Decision Process:
Formalizing Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

get new state
and/or reward environment

(",$,ℛ, &, ')Markov Decision
Process:

Markov Decision Process:
Formalizing Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

get new state
and/or reward environment

(",$,ℛ, &, ')Markov Decision
Process:

set of
possible

states

set of
possible
actions

Markov Decision Process:
Formalizing Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

get new state
and/or reward environment

(",$,ℛ, &, ')Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

Markov Decision Process:
Formalizing Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

get new state
and/or reward environment

(",$,ℛ, &, ')Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

Markov Decision Process:
Formalizing Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

get new state
and/or reward environment

(",$,ℛ, &, ')Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Robot in a room

+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

Slide courtesy Peter Bodík

Goal: what’s the strategy to achieve the maximum reward?

Robot in a room
+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

states: current location
actions: where to go next

rewards

what is the solution? Learn a mapping from (state, action)
pairs to new states

Slide courtesy Peter Bodík

Markov Decision Process:
Formalizing Reinforcement Learning

(",$,ℛ, &, ')Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state !!

Markov Decision Process:
Formalizing Reinforcement Learning

(",$,ℛ, &, ')Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state !!
for t = 1 to …:
 choose action ""

Markov Decision Process:
Formalizing Reinforcement Learning

(",$,ℛ, &, ')Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state !!
for t = 1 to …:
 choose action ""
 “move” to next state !" ∼ $ ⋅ !"#$, "")	

!"#$%&
': S à A

Markov Decision Process:
Formalizing Reinforcement Learning

(",$,ℛ, &, ')Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state !!
for t = 1 to …:
 choose action ""
 “move” to next state !" ∼ $ ⋅ !"#$, "")	
 get reward)" = 	ℛ(!", "")

Markov Decision Process:
Formalizing Reinforcement Learning

(",$,ℛ, &, ')Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state !!
for t = 1 to …:
 choose action ""
 “move” to next state !" ∼ $ ⋅ !"#$, "")	
 get reward)" = 	ℛ(!", "")

objective: choose
action over time

to maximize time-
discounted reward

Markov Decision Process:
Formalizing Reinforcement Learning

(",$,ℛ, &, ')Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state !!
for t = 1 to …:
 choose action ""
 “move” to next state !" ∼ $ ⋅ !"#$, "")	
 get reward)" = 	ℛ(!", "")

objective: choose action over
time to maximize discounted

reward

Reward at
time t

Consider all
possible future

times t

Markov Decision Process:
Formalizing Reinforcement Learning

(",$,ℛ, &, ')Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state !!
for t = 1 to …:
 choose action ""
 “move” to next state !" ∼ $ ⋅ !"#$, "")	
 get reward)" = 	ℛ(!", "")

objective: maximize
discounted reward

Reward at
time t

Discount at
time t

Consider all
possible future

times t

Markov Decision Process:
Formalizing Reinforcement Learning

(",$,ℛ, &, ')Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state !!
for t = 1 to …:
 choose action ""
 “move” to next state !" ∼ $ ⋅ !"#$, "")	
 get reward)" = 	ℛ(!", "")

objective: maximize
discounted reward

max
-
$
./0

%.&.

Reward at
time t

Discount at
time t

Consider all
possible future

times t

Example of Discounted Reward
• If the discount factor ! =
0.8 then reward

0.8!&! +
 0.8"&" + 0.8#&# +
	0.8$&$ +⋯+ 0.8%&% +	…
• Allows you to consider all

possible rewards in the
future but preferring
current vs. future self

44

objective: maximize
discounted reward

max
!
$
"#$

%"&"

Reward at
time t

Discount at
time t

Consider all
possible future

times t

Markov Decision Process:
Formalizing Reinforcement Learning

(",$,ℛ, &, ')Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state %!
for t = 1 to …:
 choose action &"
 “move” to next state %" ∼ (⋅ %"#$, &")	
 get reward -" = 	ℛ(%", &")

“solution”: the policy '∗ that maximizes the
expected (average) time-discounted reward

objective: maximize
discounted reward

max
!
$
"#$

%"&"

Markov Decision Process:
Formalizing Reinforcement Learning

(",$,ℛ, &, ')Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state %!
for t = 1 to …:
 choose action &"
 “move” to next state %" ∼ (⋅ %"#$, &")	
 get reward -" = 	ℛ(%", &")

'∗ = argmax
!

+ $
"#$

%"&" ; '“solution”

objective: maximize
discounted reward

max
!
$
"#$

%"&"

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝜋, 𝛾)Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠!
for t = 1 to …:
 choose action 𝑎"
 “move” to next state 𝑠" ∼ 𝜋 ⋅ 𝑠"#$, 𝑎")	
 get reward 𝑟" = 	ℛ(𝑠", 𝑎")

𝜋∗ = argmax
-

𝔼 $
./0

𝛾.𝑟. ; 𝜋“solution”

objective: maximize
discounted reward

max
-
$
./0

𝛾.𝑟.

Here, 𝑟! is a function of random
variable 𝑠!.

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝜋, 𝛾)Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠!
for t = 1 to …:
 choose action 𝑎"
 “move” to next state 𝑠" ∼ 𝜋 ⋅ 𝑠"#$, 𝑎")	
 get reward 𝑟" = 	ℛ(𝑠", 𝑎")

𝜋∗ = argmax
-

𝔼 $
./0

𝛾.𝑟. ; 𝜋“solution”

objective: maximize
discounted reward

max
-
$
./0

𝛾.𝑟.

Here, 𝑟! is a function of random
variable 𝑠!. è

The expectation is over the
different states 𝑠! the agent
could be in at time t (equiv.

actions the agent could take).

Simple Example

• Learn to play checkers
– Two-person game
– 8x8 boards, 12

checkers/side
– relatively simple set of

rules:
http://www.darkfish.co
m/checkers/rules.html

– Goal is to eliminate all
your opponent’s pieces

https://pixabay.com/en/checker-board-black-game-pattern-29911

http://www.darkfish.com/checkers/rules.html
http://www.darkfish.com/checkers/rules.html

Some Challenges

1. Representing states (and actions)

2. Defining our reward

3. Learning our policy

77

Overview: Learning Strategies

Dynamic Programming

Q-learning

Monte Carlo approaches

Accessible or
observable stateRepeat:

w s ß sensed state
w If s is a terminal state then exit
w a ß choose action (given s)
w Perform a

Reactive Agent Algorithm

96

Policy (Reactive/Closed-Loop Strategy)

97

• In every state, we need to know what to do
• The goal doesn’t change
• A policy (P) is a complete mapping from
 states to actions

• “If in [3,2], go up; if in [3,1], go left; if in…”

-1

+1

2

3

1

4321

Optimal Policy

99

-1

+1

• A policy P is a complete mapping from states to actions
• The optimal policy P* is the one that always yields a
 history (sequence of steps ending at a terminal state)
 with maximal expected utility

2

3

1

4321

Optimal Policy

100

-1

+1

• A policy P is a complete mapping from states to actions
• The optimal policy P* is the one that always yields a
 history with maximal expected utility

2

3

1

4321

This problem is called a
Markov Decision Problem (MDP)

How to compute P*?

Defining Value Function
• Problem:
– When making a decision, we only know the

reward so far, and the possible actions

101

Defining Value Function
• Problem:
– When making a decision, we only know the

reward so far, and the possible actions
– We’ve defined value function retroactively (i.e.,

the value function/utility of a history/sequence of
states is known once we finish it)

101

Defining Value Function
• Problem:
– When making a decision, we only know the

reward so far, and the possible actions
– We’ve defined value function retroactively (i.e.,

the value function/utility of a history/sequence of
states is known once we finish it)

– What is the value function of a particular state
in the middle of decision making?

101

Defining Value Function
• Problem:
– When making a decision, we only know the

reward so far, and the possible actions
– We’ve defined value function retroactively (i.e.,

the value function/utility of a history/sequence of
states is known once we finish it)

– What is the value function of a particular state
in the middle of decision making?

– Need to compute expected value function of
possible future histories/states

101

Defining Value Function
• Problem:
– When making a decision, we only know the

reward so far, and the possible actions
– We’ve defined value function retroactively (i.e.,

the value function/utility of a history/sequence of
states is known once we finish it)

– What is the value function of a particular state
in the middle of decision making?

– Need to compute expected value function of
possible future histories/states

101

use value functions to structure the search for good
policies

Dynamic programming

Slide courtesy/adapted: Peter Bodík

use value functions to structure the search for good
policies

policy evaluation: compute Vp from p
policy improvement: improve p based on Vp

Dynamic programming

Slide courtesy/adapted: Peter Bodík

use value functions to structure the search for good
policies

policy evaluation: compute Vp from p
policy improvement: improve p based on Vp

start with an arbitrary policy
repeat evaluation/improvement until convergence

Dynamic programming

Slide courtesy/adapted: Peter Bodík

