CMSC 478: Reinforcement Learning

Some slides courtesy Cynthia Matuszek and Frank Farrero, with some material from Marie desJardin, Lise Getoor, Jean-Claude Latombe, and Daphne Koller

There's an entire book!

Reinforcement Learning An Introduction

http://incompleteideas. net/book/the-book-2nd.html

Richard S. Sutton and Andrew G. Barto

The Big Idea

- "Planning": Find a sequence of steps to accomplish a goal.
 - Given start state, transition model, goal functions...
- This is a kind of sequential decision making.
 Transitions are deterministic.
- What if they are stochastic (probabilistic)?
 One time in ten, you drop your sock
- Probabilistic Planning: Make a plan that accounts for probability by carrying it through the plan.

Review: Formalizing Agents

- Given:
 - A state space S
 - A set of actions $a_1, ..., a_k$ including their results
 - Reward value at the end of each trial (series of action) (may be positive or negative)
- Output:

A mapping from states to actions

Review: Formalizing Agents

- Given:
 - A state space S
 - A set of actions $a_1, ..., a_k$ including their results
 - Reward value at the end of each trial (series of action) (may be positive or negative)
- Output:
 - A mapping from states to actions
 - Which is a **policy**, π

- We often have an agent which has a task to perform
 - It takes some actions in the world
 - At some later point, gets feedback on how well it did
 - The agent performs the same task repeatedly
- This problem is called **reinforcement learning**:
 - The agent gets positive reinforcement for tasks done well
 - And gets negative reinforcement for tasks done poorly
 - Must somehow figure out which actions to take next time

agent

environment

https://static.vecteezy.com/system/resources/previews/000/0 90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

https://static.vecteezy.com/system/resources/previews/000/0 90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

take action

get new state and/or reward

environment

https://static.vecteezy.com/system/resources/previews/000/0 90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

take action

get new state and/or reward

environment

https://static.vecteezy.com/system/resources/previews/000/0 90/451/original/four-seasons-landscape-illustrations-vector.jpg

Simple Robot Navigation Problem

• In each state, the possible actions are U, D, R, and L

Probabilistic Transition Model

- In each state, the possible actions are U, D, R, and L
- The effect of U is as follows (transition model):
 - With probability 0.8, the robot moves up one square (if the robot is already in the top row, then it does not move)

Probabilistic Transition Model

- In each state, the possible actions are U, D, R, and L
- The effect of U is as follows (transition model):
 - With probability 0.8, the robot moves up one square (if the robot is already in the top row, then it does not move)
 - With probability 0.1, the robot moves right one square (if the robot is already in the rightmost row, then it does not move)

Probabilistic Transition Model

- In each state, the possible actions are U, D, R, and L
- The effect of U is as follows (transition model):
 - With probability 0.8, the robot moves up one square (if the robot is already in the top row, then it does not move)
 - With probability 0.1, the robot moves right one square (if the robot is already in the rightmost row, then it does not move)
 - With probability 0.1, the robot moves left one square (if the robot is already in the leftmost row, then it does not move)

Markov Property

The transition properties depend only on the current state, not on the previous history (how that state was reached)

Markov assumption generally: current state only ever depends on previous state (or finite set of previous states).

take action

Markov Decision Process:

 $(\mathcal{S}, \mathcal{A}, \mathcal{R}, P, \gamma)$

https://static.vecteezy.com/system/resources/previews/000/0 90/451/original/four-seasons-landscape-illustrations-vector.jpg

take action

states

take action

take action

take action

Robot in a room

actions: UP, DOWN, LEFT, RIGHT

UP 80% move UP 10% move LEFT 10% move RIGHT

reward +1 at [4,3], -1 at [4,2] reward -0.04 for each step

Goal: what's the strategy to achieve the maximum reward?

Robot in a room

actions: UP, DOWN, LEFT, RIGHT

UP

80%move UP10%move LEFT10%move RIGHT

reward +1 at [4,3], -1 at [4,2] reward -0.04 for each step

states: current location actions: where to go next rewards

what is the solution? Learn a mapping from (state, action) pairs to new states

Markov Decision Process:

set of state-action possible transition actions distribution $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{P}, \gamma)$ reward of

set of possible states reward of (state, action) pairs

Start in initial state s_0

Markov Decision Process:

set of state-action possible transition distribution actions $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{P}, \gamma)$ reward of

(state,

set of possible states

discount factor action) pairs

Start in initial state s_0 for t = 1 to ...: choose action a_t

Markov Decision Process:

(state,

possible states

discount factor action) pairs

```
Start in initial state s_0
for t = 1 to ...:
  choose action a_t
  "move" to next state s_t \sim \pi(\cdot | s_{t-1}, a_t)
```

Policy $\pi: S \rightarrow A$

Markov Decision Process:

set of state-action possible transition distribution actions $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{P}, \gamma)$ reward of

set of possible states

reward of (state, action) pairs discount factor

```
Start in initial state s_0
for t = 1 to ...:
choose action a_t
"move" to next state s_t \sim \pi(\cdot|s_{t-1}, a_t)
get reward r_t = \mathcal{R}(s_t, a_t)
```

Markov Decision Process:

set of state-action possible transition distribution actions $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{P}, \gamma)$ set of reward of

set of possible states

reward of (state, action) pairs discount factor

```
Start in initial state s_0
for t = 1 to ...:
choose action a_t
"move" to next state s_t \sim \pi(\cdot | s_{t-1}, a_t)
get reward r_t = \mathcal{R}(s_t, a_t)
```

objective: choose action over time to maximize timediscounted reward

Markov Decision Process:

possible states reward of (state, action) pairs

```
Start in initial state s_0
for t = 1 to ...:
choose action a_t
"move" to next state s_t \sim \pi(\cdot | s_{t-1}, a_t)
get reward r_t = \mathcal{R}(s_t, a_t)
```

objective: choose action over time to maximize discounted reward

```
Consider all
possible future
times t
```

Reward at time t

Markov Decision Process:

(state,

set of possible states

discount factor action) pairs

```
Start in initial state s_0
for t = 1 to ...:
  choose action a_t
  "move" to next state s_t \sim \pi(\cdot | s_{t-1}, a_t)
  get reward r_t = \mathcal{R}(s_t, a_t)
```

objective: maximize discounted reward

Consider all Discount at Reward at possible future time t time t times t

Markov Decision Process:

set of possible states

reward of (state, action) pairs discount factor

Start in initial state s_0 for t = 1 to ...: choose action a_t "move" to next state $s_t \sim \pi(\cdot | s_{t-1}, a_t)$ get reward $r_t = \mathcal{R}(s_t, a_t)$

objective: maximize discounted reward

Example of Discounted Reward

- If the discount factor $\gamma = 0.8$ then reward $0.8^{0}r_{0} + 0.8^{1}r_{1} + 0.8^{2}r_{2} + 0.8^{3}r_{3} + \dots + 0.8^{n}r_{n} + \dots$
- Allows you to consider all possible rewards in the future but preferring current vs. future self

Markov Decision Process:

set of possible states reward of (state, action) pairs discount factor

```
Start in initial state s_0
for t = 1 to ...:
choose action a_t
"move" to next state s_t \sim \pi(\cdot|s_{t-1}, a_t)
get reward r_t = \mathcal{R}(s_t, a_t)
```

objective: maximize discounted reward

"solution": the policy π^* that maximizes the expected (average) time-discounted reward

Markov Decision Process:

(state,

set of possible states

discount factor action) pairs

objective: maximize Start in initial state s_0 discounted reward for t = 1 to ...: choose action a_t max "move" to next state $s_t \sim \pi(\cdot | s_{t-1}, a_t)$ get reward $r_t = \mathcal{R}(s_t, a_t)$ Г

"solution"
$$\pi^* = \underset{\pi}{\operatorname{argmax}} \mathbb{E} \left[\sum_{t>0} \gamma^t r_t ; \pi \right]$$

Markov Decision Process: Formalizing Reinforcement Learning Mar Here, r_t is a function of random variable *s*_t. Start in initia for t = 1 to .. choose action and \max_{π} "move" to next state $s_t \sim \pi(\cdot | s_{t-1}, a_t)$ get reward $r_t = \mathcal{R}(s_t, a_t)$

Forr	Markov Decision Process: nalizing Reinforcement Learning
Mar	Here, r_t is a function of random variable s_t .
	The expectation is over the different states <i>s_t</i> the agent
Start in initia for t = 1 to	could be in at time <i>t</i> (equiv. actions the agent could take).
choose act "move" to get reward	next state $s_t \sim \pi(\cdot s_{t-1}, a_t)$ $\pi r_t = \mathcal{R}(s_t, a_t)$ $\max_{t>0} \gamma^t r_t$
	"solution" $\pi^* = \operatorname*{argmax}_{\pi} \mathbb{E} \left[\sum_{t>0} \gamma^t r_t ; \pi \right]$

Simple Example

- Learn to play checkers
 - Two-person game
 - 8x8 boards, 12 checkers/side
 - relatively simple set of rules:
 <u>http://www.darkfish.co</u>
 <u>m/checkers/rules.html</u>
 - Goal is to eliminate all your opponent's pieces

Some Challenges

1. Representing states (and actions)

2. Defining our reward

3. Learning our policy

Overview: Learning Strategies

Dynamic Programming

Q-learning

Monte Carlo approaches

Reactive Agent Algorithm

Policy (Reactive/Closed-Loop Strategy)

- In every state, we need to know what to do
- The goal doesn't change
- A policy (Π) is a complete mapping from states to actions
 - "If in [3,2], go up; if in [3,1], go left; if in..."

Optimal Policy

- A policy Π is a complete mapping from states to actions
- The optimal policy Π* is the one that always yields a history (sequence of steps ending at a terminal state) with maximal *expected* utility

Optimal Policy

- A policy Π is a comp
 The optimal policy Π
 Markov Decision Problem (MDP)
- history with maximal expected utility

How to compute Π *?

- Problem:
 - When making a decision, we only know the reward so far, and the possible actions

- Problem:
 - When making a decision, we only know the reward so far, and the possible actions
 - We've defined value function retroactively (i.e., the value function/utility of a history/sequence of states is known *once we finish it*)

- Problem:
 - When making a decision, we only know the reward so far, and the possible actions
 - We've defined value function retroactively (i.e., the value function/utility of a history/sequence of states is known *once we finish it*)
 - What is the value function of a particular *state* in the middle of decision making?

- Problem:
 - When making a decision, we only know the reward so far, and the possible actions
 - We've defined value function retroactively (i.e., the value function/utility of a history/sequence of states is known *once we finish it*)
 - What is the value function of a particular *state* in the middle of decision making?
 - Need to compute *expected value function* of possible future histories/states

$$V^{\pi}(s) = \mathbb{E}\left[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots \right| s_0 = s, \pi].$$

 $V^{\pi}(s)$ is simply the expected sum of discounted rewards upon starting in state s, and taking actions according to π .¹

Given a fixed policy π , its value function V^{π} satisfies the **Bellman equations**:

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s').$$

- What is the value function of a particular *state* in the middle of decision making?
- Need to compute *expected value function* of possible future histories/states

Dynamic programming

use value functions to structure the search for good policies

Dynamic programming

use value functions to structure the search for good policies

c policy evaluation: compute V^π from π policy improvement: improve π based on V^π

Slide courtesy/adapted: Peter Bodík

Dynamic programming

use value functions to structure the search for good policies

policy evaluation: compute V^{π} from π policy improvement: improve π based on V^{π}

start with an arbitrary policy repeat evaluation/improvement until convergence