CMSC 478:

 Machine LearningKMA Solaiman - ksolaima@umbc.edu

ML TOOLKITS

Toolkit Basics

- Machine learning involves working with data - analyzing, manipulating, transforming, ...
- More often than not, it's numeric or has a natural numeric representation
- Natural language text is an exception, but this too can have a numeric representation
- A common data model is as a N -dimensional matrix or tensor
- These are supported in Python via libraries

Typical Python Libraries

numpy, scipy

- Basic mathematical libraries for dealing with matrices and scientific/mathematical functions
pandas, matplotlib
- Libraries for data science \& plotting
sklearn (scikit-learn)
- A whole bunch of implemented classifiers

torch (pytorch) and tensorflow
- Frameworks for building neural networks

What is Numpy?

- NumPy supports features needed for ML
- Typed N-dimensional arrays (matrices/tensors)
- Fast numerical computations (matrix math)
- High-level math functions
- Python does numerical computations slowly and lacks an efficient matrix representation
- 1000×1000 matrix multiply
- Python triple loop takes > 10 minutes!
- Numpy takes ~0.03 seconds

NumPy Arrays Can Represent ..

Structured lists of numbers

- Vectors
- Matrices

- Images
- Tensors
- Convolutional Neural

$$
\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]
$$ Networks

NumPy Arrays Can Represent ..

Structured lists of numbers

- Vectors
- Matrices
- Images
- Tensors
- Convolutional Neural Networks

NumPy Arrays Can Represent ..

Structured lists of numbers

- Vectors
- Matrices
- Images
- Tensors
- Convolutional Neural Networks

NumPy Arrays, Basic Properties

```
>>> import numpy as np
>>> a= np.array([[1,2,3],[4,5,6]],dtype=np.float32)
>>> print(a.ndim, a.shape, a.dtype)
2 (2, 3) float32
>> print(a)
[[1. 2. 3.]
        [4. 5. 6.]]
```


Arrays:

1. Can have any number of dimensions, including zero (a scalar)
2. Are typed: np.uint8, np.int64, np.float32, np.float64
3. Are dense: each element of array exists and has the same type

NumPy Array Indexing, Slicing

$a[0,0]$ \# top-left element
$a[0,-1]$ \# first row, last column
$a[0,:]$ \# first row, all columns
$a[:, 0]$ \# first column, all rows
$a[0: 2,0: 2]$ \# 1st 2 rows, 1st 2 columns

Notes:

- Zero-indexing
- Multi-dimensional indices are comma-separated)
- Python notation for slicing

SciPy

- SciPy builds on the NumPy array object
- Adds additional mathematical functions and sparse arrays
- Sparse array: one where most elements = 0
- An efficient representation only implicitly encodes the non-zero values
- Access to a missing element returns 0

SciPy sparse array use case

- NumPy and SciPy arrays are numeric
- We can represent a document's content by a vector of features
- Each feature is a possible word
- A feature's value might be any of:
- TF: number of times it occurs in the document;
- TF-IDF: ... normalized by how common the word is
- and maybe normalized by document length ...

SciPy sparse array use case

- Maybe only model 50k most frequent words found in a document collection, ignoring others
- Assign each unique word an index (e.g., dog:137)
- Build python dict w from vocabulary, so w['dog']=137
- The sentence "the dog chased the cat"
- Would be a numPy vector of length 50,000
- Or a sciPy sparse vector of length 4
- An 800-word news article may only have 100 unique words; The Hobbit has about 8,000

More on
 SciPy

SciPy Tutorial

- Introduction
- Basic functions
- Special functions (scipy.special)
- Integration (scipy.integrate)
- Optimization (scipy.optimize)
- Interpolation (scipy.interpolate)
- Fourier Transforms (scipy.fft)
- Signal Processing (scipy.signal)
- Linear Algebra (scipy.linalg)
- Sparse eigenvalue problems with ARPACK
- Compressed Sparse Graph Routines (scipy.sparse.csgraph)
- Spatial data structures and algorithms (scipy.spatial)
- Statistics (scipy.stats)
- Multidimensional image processing (scipy.ndimage)
- File IO (scipy.io)

scikit-learn
 Machine Learning in Python

- Simple and efficien tools for data mining and data analysis
- Accessible to everybo ${ }^{\prime} v$, and reusable in various contexts
- Built on NumPy, SciPy, a d matplotlib
- Open source, commercially usable - BSD license

Many tutorials

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition.
Algorithms: SVM, nearest neighbors,
random forest, .

- Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency
Algorithms: PCA, feature selection, non-
negative matrix factorization. - Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso,

- Examples

Model selection

Comparing, validating and choosing parameters and models.
Goal: Improved accuracy via parameter tuning
Modules: grid search, cross validation, metrics. - Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes
Algorithms: k-Means, spectral clustering,
mean-shift, ... - Examples

Preprocessing

Feature extraction and normalization.
Application: Transforming input data such as text for use with machine learning algorithms.
Modules: preprocessing, feature extraction.

- Examples

How easy is this?

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html \ggg from sklearn.datasets import load iris \ggg from $s k l e a r n . l i n e a r m o d e l$ import LogisticRegression $\ggg X, Y=$ load_iris (return_X_y=True)
features on
data

DATA \& EVALUATION

Central Question: How Well Are We Doing?

Evaluation Metrics

Clustering

the task: what kind of problem are you solving?

Evaluation methodology (1)

Standard methodology:

1. Collect large set of examples with correct classifications (aka ground truth data)
2. Randomly divide collection into two disjoint sets: training and test (e.g., via a 90-10\% split)
3. Apply learning algorithm to training set giving hypothesis H
4. Measure performance of H on the held-out test set

Evaluation methodology (2)

- Important: keep the training and test sets disjoint!
- Study efficiency \& robustness of algorithm: repeat steps 2-4 for different training sets \& training set sizes
- On modifying algorithm, restart with step 1 to avoid evolving algorithm to work well on just this collection

Evaluation methodology (2)

- Important: keep the training and test sets disjoint!
- Study efficier But Not falgorithm: repeat steps supposed to training set see test data to
- On modifyin improve model with step 1 to avoid evolving d rork well on just this collection

Experimenting with Machine Learning Models

All your data

Rule \#1

Evaluation methodology (3)

Common variation on methodology:

1. Collect set of examples with correct classifications
2. Randomly divide it into two disjoint sets: development \& test; further divide development into devtrain \& devtest
3. Apply ML to devtrain, creating hypothesis H
4. Measure performance of H w.r.t. devtest data
5. Modify approach, repeat 3-4 as needed
6. Final test on test data

Evaluation methodology (4)

$C \longdiv { \text { - Only devtest data used for evalua- } }$ 1. tion during system development

- When all development has ended, test data used for final evaluation
- Ensures final system not influenced by test data

3. - If more development needed, get
4. new dataset!
devtest data
5. Modify approach, repeat 3-4 as needed
6. Final test on test data

Evaluation with different dev-test

```
def train_and_test(clf, data, start, end):
    # Splitting the data
    train_data = data.subset(examples=range(start, end))
    test_data = data.subset(examples=range(end))
    # Prepare training and testing sets
    X_train = train_data.inputs
    y_train = train_data.values
    X_test = test_data.inputs
    y_test = test_data.values
    # Initialize Decision Tree classifier
    clf = clf.fit(X_train, y_train)
    # Predict on test set
    y_pred = clf.predict(X_test)
    # Calculate accuracy
    accuracy = accuracy_score(y_test, y_pred)
return accuracy
```

```
# Initialize Decision Tree classifier
clf = DecisionTreeClassifier()
# Perform train and test for different ranges
accuracy_1 = train_and_test(clf, zoo, 0, 10)
# >>> 1.0
accuracy_2 = train_and_test(clf, zoo, 90, 100)
# >>> 0.80000000000000004
accuracy_3 = train_and_test(clf, zoo, 90, 101)
# >>> 0.81818181818181823
accuracy_4 = train_and_test(clf, zoo, 80, 90)
# >>> 0.90000000000000002
```


Evaluation with different dev-test

- We hold out 10 data items for test; train on the other 91; show the accuracy on the test data
- Doing this four times for different test subsets shows accuracy from 80% to 100%
- What's the true accuracy of our approach?

K-fold Cross Validation

- Problems:
- getting ground truth data expensive
- need different test data for each test
- experiments needed to find right feature space \& parameters for ML algorithms
- Goal: minimize training+test data needed
- Idea: split training data into K subsets; use K-1 for training and one for development testing
- Repeat K times and average performance
- Common K values are 5 and 10

All Data

Training data

Test data

sklearn.model_selection.KFold

```
class sklearn.model_selection.KFold(n_splits=5, *,}\mathrm{ shuffle=False, random_state=None)
```

K-Fold cross-validator.
Provides train/test indices to split data in train/test sets. Split dataset into k consecutive folds (without shuffling by default).
Each fold is then used once as a validation while the k-1 remaining folds form the training set.
Read more in the User Guide.
For visualisation of cross-validation behaviour and comparison between common scikit-learn split methods refer to Visualizing cross-validation behavior in scikit-learn

```
Parameters: n_splits : int, default=5
    Number of folds. Must be at least 2.
    Changed in version 0.22: n_splits default value changed from 3 to 5.
shuffle : bool, default=False
    Whether to shuffle the data before splitting into batches. Note that the samples within each split will not be
    shuffled.
random_state : int, RandomState instance or None, default=None
    When shuffle is True, random_state affects the ordering of the indices, which controls the randomness
    of each fold. Otherwise, this parameter has no effect. Pass an int for reproducible output across multiple
    function calls. See Glossary.
```


sklearn.model_selection.StratifiedKFold

```
class sklearn.model_selection.StratifiedKFold(n_splits=5, *, shuffle=False,random_state=None)
```

Stratified K-Fold cross-validator.
Provides train/test indices to split data in train/test sets.
This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving the percentage of samples for each class.

- Takes class information into account to avoid building folds with imbalanced class distributions (for binary or multiclass classification tasks).

Leave one out Cross Validation

- Sklearn also has a LeaveOneOut function that Provides train/test indices to split data in train/test sets. Each sample is used once as a test set (singleton) while the remaining samples form the training set.
- LeaveOneOut() is equivalent to KFold(n_splits=n) where n is the number of samples.
- K-fold cross validation can be too pessimistic, since it only trains with 80% or 90% of the data
- The leave one out evaluation is an alternative

Learning curve (1)

A learning curve shows accuracy on test set as a function of training set size or (for neural networks) number of epochs

Learning curve

- When evaluating ML algorithms, steeper learning curves are better
- They represents faster learning with less data

Here the system with the red curve is better since it requires less data to achieve desired accuracy

EVALUATION METRICS

Classification Evaluation: the 2-by-2 contingency table

Let's assume there are two classes/labels

Assume is the "positive" label

Given X, our classifier predicts either label

$$
p(\bigcirc \mid x) \text { vs. } p(\bigcirc \mid x)
$$

Classification Evaluation: the 2-by-2 contingency table

What is the actual label?

What label does our system predict? (\downarrow)

Actually
Correct

Actually

Incorrect
Selected/
Guessed
Not selected/
not guessed

Classification Evaluation:

 the 2-by-2 contingency table
What is the actual label?

What label does our system predict? (\downarrow)

Actually
Correct

Actually

Incorrect
Selected/
Guessed
True Positive
Attual (TP)
Guessed
Not selected/
not guessed

Classification Evaluation:

 the 2-by-2 contingency table
What is the actual label?

What label does our system predict? (\downarrow)

Actually
 Correct

Actually
 Incorrect

Selected/
 Guessed

True Positive
False Positive
\bigcirc

Guessed
Actual (TP)
Guessed

Not selected/
not guessed

Classification Evaluation:

 the 2-by-2 contingency table
What is the actual label?

What label does our system predict? (\downarrow)

Actually
 Correct

Actually

Incorrect
Selected/
Guessed
Not selected/
not guessed

True Positive
(TP)
Guessed

False Positive (FP)

Classification Evaluation:

 the 2-by-2 contingency table
What is the actual label?

What label does our system predict? (\downarrow)

Actually
 Correct

Actually

Incorrect

Selected/
 Guessed

Not selected/
not guessed

True Positive (TP) Guessed
False Negative (FN)

False Positive ${ }^{\circ} \mathrm{O}$ (FP) Gusesed
True Negative O (TN)

Guessed

Classification Evaluation:

 the 2-by-2 contingency table
What is the actual label?

What label does our system predict? (\downarrow)

Actually
 Correct

Actually
 Incorrect

Selected/
 Guessed
 True Positive
 False Positive
 (TP)
 Guessed

 (FP)
 Guessed

Not selected/ False Negative
not guessed
(FN)
Guessed

True Negative
$\underset{\text { Actual }}{\bigcirc}$ (TN)
Guessed

Construct this table by counting the number of TPs, FPs, FNs, TNs

Contingency Table Example

Contingency Table Example

Predicted:
Actual:

What is the actual label?

What label does our system predict? (\downarrow)

Actually
 Correct
 Actually
 Incorrect

Selected/
Guessed

Not selected/ False Negative

True Positive (TP) (FN)

False Positive (FP) not guessed

Contingency Table Example

Predicted:
Actual:

What is the actual label?

What label does our system predict? (\downarrow)

Actually
 Correct
 Actually
 Incorrect

Selected/
Guessed

Not selected/ False Negative

True Positive
(TP) = 2 (FN)

False Positive (FP) not guessed

Contingency Table Example

 Predicted:Actual:

What is the actual label?

What label does our system predict? (\downarrow)

Actually
 Correct
 Actually
 Incorrect

Selected/
Guessed

True Positive
(TP) = 2
Not selected/ False Negative not guessed
(FP) = 1
False Positive

True Negative
(TN)

Contingency Table Example

Predicted:

--

Actual:

What is the actual label?

What label does our system predict? (\downarrow)
Actually
Correct
Actually
Incorrect

Selected/
Guessed

True Positive
(TP) = 2
(FP) = 1
True Negative (TN)

Contingency Table Example

Predicted:
Actual:

What is the actual label?

What label does our system predict? (\downarrow)
Actually
Correct
Actually
Incorrect

Selected/
Guessed

Not selected/ False Negative True Negative

True Positive

$$
(T P)=2
$$

$$
(F N)=1
$$

False Positive
(FP) = 1 not guessed

Contingency Table Example

Predicted:
Actual:

What is the actual label?

What label does our system predict? (\downarrow)
Actually
Correct
Actually
Incorrect

Selected/
Guessed

True Positive

$$
(T P)=2
$$

False Negative

$$
(F N)=1
$$

False Positive
(FP) = 1
True Negative
$(\mathrm{TN})=1$

Classification Evaluation: Accuracy, Precision, and Recall

Accuracy: \% of items correct TP + TN
$\overline{T P+F P+F N+T N}$

	Actually Correct	Actually Incorrect
Selected/Guessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)
66		

Classification Evaluation: Accuracy, Precision, and Recall

Accuracy: \% of items correct TP + TN

$$
\overline{T P+F P+F N+T N}
$$

Precision: \% of selected items that are correct
$\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}$

	Actually Correct	Actually Incorrect
Selected/Guessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)

Classification Evaluation:

Accuracy, Precision, and Recall

Accuracy: \% of items correct TP + TN

$$
\overline{\mathrm{TP}+\mathrm{FP}+\mathrm{FN}+\mathrm{TN}}
$$

Precision: \% of selected items that are correct
$\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}$

Recall: \% of correct items that are selected
TP
$\overline{T P+F N}$

	Actually Correct	Actually Incorrect
Selected/Guessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)

Classification Evaluation:

Accuracy, Precision, and Recall

Accuracy: \% of items correct

$$
\frac{\mathrm{TP}+\mathrm{TN}}{\mathrm{TP}+\mathrm{FP}+\mathrm{FN}+\mathrm{TN}}
$$

Precision: \% of selected items that are correct TP

$$
\overline{\mathrm{TP}+\mathrm{FP}}
$$

Min: 0 :
Max: 1 -

Recall: \% of correct items that are selected

TP
$\overline{\mathrm{TP}+\mathrm{FN}}$

	Actually Correct	Actually Incorrect
Selected/Guessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)

Precision and Recall Present a Tradeoff

Q: Where do you want your ideal model ?

Precision and Recall Present a Tradeoff

Measure this Tradeoff: Area Under the Curve (AUC)

AUC measures the area under
 this tradeoff curve

Min AUC: 0 :
 Max AUC: 1 :

Measure this Tradeoff: Area Under the Curve (AUC)

AUC measures the area under

Min AUC: 0 :
Max AUC: 1 :
this tradeoff curve

1. Computing the curve You need true labels \& predicted labels with some score/confidence estimate

Threshold the scores and for each threshold compute precision and recall

Measure this Tradeoff: Area Under the Curve (AUC)

AUC measures the area under this tradeoff curve

Min AUC: 0 : Max AUC: 1 :

1. Computing the curve You need true labels \& predicted labels with some score/confidence estimate Threshold the scores and for each threshold compute precision and recall
2. Finding the area

How to implement: trapezoidal rule (\& others)

In practice: external library like the sklearn.metrics module

Measure A Slightly Different Tradeoff: ROC-AUC

AUC measures the area under this tradeoff curve

Min ROC-AUC: 0.5 : Max ROC-AUC: 1 :

A combined measure: F

Weighted (harmonic) average of Precision \& Recall

$$
F=\frac{1}{\alpha \frac{1}{P}+(1-\alpha) \frac{1}{R}}
$$

A combined measure: F

Weighted (harmonic) average of Precision \& Recall

$$
F=\frac{1}{\alpha \frac{1}{P}+(1-\alpha) \frac{1}{R}}=\frac{\left(1+\beta^{2}\right) * P * R}{\left(\beta^{2} * P\right)+R}
$$

A combined measure: F

Weighted (harmonic) average of Precision \& Recall

$$
F=\frac{\left(1+\beta^{2}\right) * P * R}{\left(\beta^{2} * P\right)+R}
$$

Balanced F1 measure: $\beta=1$

$$
F_{1}=\frac{2 * P * R}{P+R}
$$

$P / R / F$ in a Multi-class Setting: Micro- vs. Macro-Averaging

If we have more than one class, how do we combine multiple performance measures into one quantity?

Macroaveraging: Compute performance for each class, then average.

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

$P / R / F$ in a Multi-class Setting: Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average.

$$
\text { macroprecision }=\sum_{c} \frac{\mathrm{TP}_{\mathrm{c}}}{\mathrm{TP}_{\mathrm{c}}+\mathrm{FP}_{\mathrm{c}}}=\sum_{c} \text { precision }_{c}
$$

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

$$
\text { microprecision }=\frac{\sum_{\mathrm{c}} \mathrm{TP}_{\mathrm{c}}}{\sum_{\mathrm{c}} \mathrm{TP}_{\mathrm{c}}+\sum_{\mathrm{c}} \mathrm{FP}_{\mathrm{c}}}
$$

$P / R / F$ in a Multi-class Setting: Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average.
macroprecision $=\sum_{c} \frac{\mathrm{TP}_{\mathrm{c}}}{\mathrm{PP}_{\mathrm{c}}+\mathrm{FP}_{\mathrm{c}}}=\sum_{c}$ precision $_{c}$

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.
when to prefer the macroaverage?

Micro- vs. Macro-Averaging: Example

Class 1

	Truth :yes	Truth : no
Classifier: yes	10	10
Classifier: no	10	970

Class 2

	Truth :yes	Truth $:$ no
Classifier: yes	90	10
Classifier: no	10	890

Micro Ave. Table

	Truth : yes	Truth : no
Classifier: yes	100 $(90+10)$	20 $(10+10)$
Classifier: no	20	1860

Macroaveraged precision: $(10 / 10+10)+(90 / 90+10) / 2=(0.5+0.9) / 2=0.7$
Microaveraged precision: 100/100+20 $=.83$
Microaveraged score is dominated by score on frequent classes

Confusion Matrix: Generalizing the 2-by-2 contingency table

Correct Value

\#
\#
\#
\#
\#
\#
\#
\#

Confusion Matrix: Generalizing the 2-by-2 contingency table

Correct Value

		\square
80	9	11
7	86	7
2	8	9

Q: Is this a good result?

Confusion Matrix: Generalizing the 2-by-2 contingency table

Correct Value

		30	40	30
Guessed Value	\bigcirc	25	30	50
		30	35	35

Confusion Matrix: Generalizing the 2-by-2 contingency table

Correct Value

7	3	90
4	8	88
3	7	90

Q: Is this a good result?

