CMSC 478: Machine Learning

KMA Solaiman – ksolaima@umbc.edu

Some slides courtesy Tim Finin and Frank Ferraro

ML TOOLKITS

Toolkit Basics

- Machine learning involves working with data
 - analyzing, manipulating, transforming, ...
- More often than not, it's numeric or has a natural numeric representation
- Natural language text is an exception, but this too can have a numeric representation
- A common data model is as a N-dimensional matrix or tensor
- These are supported in Python via libraries

Typical Python Libraries

numpy, scipy

 Basic mathematical libraries for dealing with matrices and scientific/mathematical functions

pandas, matplotlib

• Libraries for data science & plotting

sklearn (scikit-learn)

• A whole bunch of implemented classifiers

torch (pytorch) and tensorflow

• Frameworks for building neural networks

Lots of documentation available for all of these online!

What is Numpy?

- NumPy supports features needed for ML
 - Typed N-dimensional arrays (matrices/tensors)
 - Fast numerical computations (matrix math)
 - High-level math functions
- Python does numerical computations slowly and lacks an efficient matrix representation
- 1000 x 1000 matrix multiply

– Python triple loop takes > 10 minutes!

– Numpy takes ~0.03 seconds

NumPy Arrays Can Represent ..

Structured lists of numbers

- Vectors
- Matrices
- Images
- Tensors
- Convolutional Neural Networks

NumPy Arrays Can Represent ..

Structured lists of numbers

- Vectors
- Matrices
- Images
- Tensors
- Convolutional Neural Networks

NumPy Arrays Can Represent ..

Structured lists of numbers

- Vectors
- Matrices
- Images
- Tensors
- Convolutional Neural Networks

NumPy Arrays, Basic Properties

```
>>> import numpy as np
>>> a= np.array([[1,2,3],[4,5,6]],dtype=np.float32)
>>> print(a.ndim, a.shape, a.dtype)
2 (2, 3) float32
>> print(a)
[[1. 2. 3.]
[4. 5. 6.]]
```

Arrays:

- 1. Can have any number of dimensions, including zero (a scalar)
- 2. Are **typed**: np.uint8, np.int64, np.float32, np.float64
- 3. Are **dense:** each element of array exists and has the same type

NumPy Array Indexing, Slicing

a[0,0] # top-left element

- a[0,-1] # first row, last column
- a[0,:] # first row, all columns
- a[:,0] # first column, all rows

a[0:2,0:2] # 1st 2 rows, 1st 2 columns Notes:

- Zero-indexing
- Multi-dimensional indices are comma-separated)
- Python notation for slicing

SciPy

- SciPy builds on the NumPy array object
- Adds additional mathematical functions and sparse arrays
- **Sparse array:** one where most elements = 0
- An efficient representation only implicitly encodes the non-zero values
- Access to a missing element returns 0

SciPy sparse array use case

- NumPy and SciPy arrays are numeric
- We can represent a document's content by a vector of features
- Each feature is a possible word
- A feature's value might be any of:
 - TF: number of times it occurs in the document;
 - TF-IDF: ... normalized by how common the word is
 - and maybe normalized by document length ...

SciPy sparse array use case

- Maybe only model 50k most frequent words found in a document collection, ignoring others
- Assign each unique word an index (e.g., dog:137)
 Build python dict w from vocabulary, so w['dog']=137
- The sentence "the dog chased the cat"
 - Would be a *numPy vector* of length 50,000
 - Or a *sciPy sparse vector* of length 4
- An 800-word news article may only have 100 unique words; <u>The Hobbit</u> has about 8,000

Docs

SciPy.org

SciPy v1.4.1 Reference Guide

SciPy Tutorial

- Introduction
- Basic functions
- Special functions (scipy.special)
- Integration (scipy.integrate)
- Optimization (scipy.optimize)
- Interpolation (scipy.interpolate)
- Fourier Transforms (scipy.fft)
- Signal Processing (scipy.signal)
- Linear Algebra (scipy.linalg)
- Sparse eigenvalue problems with ARPACK
- Compressed Sparse Graph Routines (scipy.sparse.csgraph)
- Spatial data structures and algorithms (scipy.spatial)
- Statistics (scipy.stats)
- Multidimensional image processing (scipy.ndimage)
- File IO (scipy.io)

More on SciPy

See the <u>SciPy</u> <u>tutorial</u> Web

pages

Home Installation

Documentation - Examples

https://sklearn.org/

scikit-learn

· Simple and efficient tools for data mining and data analysis

- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
- · Open source, commercially usable BSD license

Many tutorials

Documentation online

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition. Algorithms: SVM, nearest neighbors, random forest, ... — Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso,

Examples

- Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes Algorithms: k-Means, spectral clustering, mean-shift, ... — Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency Algorithms: PCA, feature selection, nonnegative matrix factorization. — Examples

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning Modules: grid search, cross validation,

metrics.

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. Modules: preprocessing, feature extraction.

- Examples

How easy is this?

DATA & EVALUATION

Central Question: How Well Are We Doing?

Evaluation Metrics

Evaluation methodology (1)

Standard methodology:

- 1. Collect large set of examples with correct classifications (aka ground truth data)
- 2. Randomly divide collection into two disjoint sets: *training* and *test* (*e.g., via a 90-10% split*)
- 3. Apply learning algorithm to **training** set giving hypothesis H
- Measure performance of H on the held-out test set

Evaluation methodology (2)

- Important: keep the training and test sets disjoint!
- Study efficiency & robustness of algorithm: repeat steps 2-4 for different training sets & training set sizes
- On modifying algorithm, restart with step 1 to avoid evolving algorithm to work well on just this collection

Evaluation methodology (2)

- Important: keep the training and test sets disjoint!
- Study efficier repeat steps training set
 But Not supposed to see test data to

f algorithm: ining sets &

• On modifying improve model with step 1 to avoid evolving a fork well on just this collection

Experimenting with Machine Learning Models

Evaluation methodology (3)

Common variation on methodology:

- 1. Collect set of examples with correct classifications
- Randomly divide it into two disjoint sets: *development* & *test;* further divide development into *devtrain* & *devtest*
- 3. Apply ML to *devtrain,* creating hypothesis H
- Measure performance of H w.r.t. devtest data
- 5. Modify approach, repeat 3-4 as needed
- 6. Final test on test data

Ground

truth data

Evaluation methodology (4)

- Only devtest data used for evalua-
- 1. tion during system **development**
- When all development has ended, test data used for final evaluation
 - Ensures final system not influenced by test data
- 3. If more development needed, get
- 4. new dataset!

devtest data

- 5. Modify approach, repeat 3-4 as needed
- 6. Final test on *test* data

Evaluation with different dev-test

def train_and_test(clf, data, start, end):
 # Splitting the data
 train_data = data.subset(examples=range(start, end))
 test_data = data.subset(examples=range(end))

```
# Prepare training and testing sets
X_train = train_data.inputs
y_train = train_data.values
X_test = test_data.inputs
y_test = test_data.values
```

Initialize Decision Tree classifier
clf = clf.fit(X_train, y_train)

```
# Predict on test set
y_pred = clf.predict(X_test)
```

```
# Calculate accuracy
accuracy = accuracy_score(y_test, y_pred)
```

return accuracy

Initialize Decision Tree classifier
clf = DecisionTreeClassifier()

Perform train and test for different ranges
accuracy_1 = train_and_test(clf, zoo, 0, 10)
>>> 1.0

accuracy_2 = train_and_test(clf, zoo, 90, 100)
>>> 0.80000000000000004

accuracy_3 = train_and_test(clf, zoo, 90, 101)
>>> 0.81818181818181823

Evaluation with different dev-test

- We hold out 10 data items for test; train on the other 91; show the accuracy on the test data
- Doing this four times for different test subsets shows accuracy from 80% to 100%
- What's the true accuracy of our approach?

K-fold Cross Validation

- Problems:
 - getting ground truth data expensive
 - need different test data for each test
 - experiments needed to find right *feature space* & parameters for ML algorithms
- **Goal:** minimize training+test data needed
- Idea: split training data into K subsets; use K-1 for *training* and one for *development testing*
- Repeat K times and average performance
- Common K values are 5 and 10

sklearn.model_selection.KFold

class sklearn.model_selection.KFold(n_splits=5, *, shuffle=False, random_state=None)

[source]

K-Fold cross-validator.

Provides train/test indices to split data in train/test sets. Split dataset into k consecutive folds (without shuffling by default).

Each fold is then used once as a validation while the k - 1 remaining folds form the training set.

Read more in the User Guide.

For visualisation of cross-validation behaviour and comparison between common scikit-learn split methods refer to Visualizing cross-validation behavior in scikit-learn

Parameters: n_splits : int, default=5 Number of folds. Must be at least 2. Changed in version 0.22: n_splits default value changed from 3 to 5. shuffle : bool, default=False Whether to shuffle the data before splitting into batches. Note that the samples within each split will not be shuffled. random_state : int, RandomState instance or None, default=None When shuffle is True, random_state affects the ordering of the indices, which controls the randomness of each fold. Otherwise, this parameter has no effect. Pass an int for reproducible output across multiple function calls. See Glossary.

sklearn.model_selection.StratifiedKFold

class sklearn.model_selection.StratifiedKFold(n_splits=5, *, shuffle=False, random_state=None) [source]

Stratified K-Fold cross-validator.

Provides train/test indices to split data in train/test sets.

This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving the percentage of samples for each class.

 Takes class information into account to avoid building folds with imbalanced class distributions (for binary or multiclass classification tasks).

Leave one out Cross Validation

- Sklearn also has a *LeaveOneOut* function that Provides train/test indices to split data in train/test sets. Each sample is used once as a test set (singleton) while the remaining samples form the training set.
- LeaveOneOut() is equivalent
 to KFold(n_splits=n) where n is the number of samples.
- K-fold cross validation can be too pessimistic, since it only trains with 80% or 90% of the data
- The leave one out evaluation is an alternative

Learning curve (1)

A <u>learning curve</u> shows accuracy on test set as a function of training set size or (for neural networks) number of epochs

Learning curve

- When evaluating ML algorithms, steeper learning curves are better
- They represents faster learning with less data

Here the system with the red curve is better since it requires less data to achieve desired accuracy

EVALUATION METRICS

Classification Evaluation: the 2-by-2 contingency table				
What is the actual label?				
What label does our system predict? (\downarrow)	Actually	Actually		
	Correct	Incorrect		
Selected/				
Guessed				
Not selected/				
not guessed				

Classification Evaluation: the 2-by-2 contingency table					
	What is the c	ictual label?			
What label does our system predict? (\downarrow)	Actually Correct	Actually Incorrect			
Selected/ Guessed	True Positive (TP) Guessed				
Not selected/ not guessed					

Classification Evaluation:
the 2-by-2 contingency table

	What is the actual label?			
What label does our system predict? (\downarrow)	Actually Correct	Actually Incorrect		
Selected/ Guessed	True Positive (TP) Guessed	False Positive (FP) Guessed		
Not selected/ not guessed				
Classes/Choices		55		

Classes/Choices

Classification Evaluation: the 2-by-2 contingency table

	What is the actual label?			
What label does our	Actually	Actually		
system predict? (\downarrow)	Correct	Incorrect		
Selected/	True Positive	False Positive		
Guessed	Actual (TP) Guessed	Actual (FP) Guessed		
Not selected/	False Negative			
not guessed	Actual (FN) OGuessed			

Classification Evaluation: the 2-by-2 contingency table

	What is the actual label?			
What label does our system predict? (\downarrow)	Actually	Actually		
system predict? (V)	Correct	Incorrect		
Selected/	True Positive	False Positive		
Guessed	Actual (TP) Guessed	Actual (FP) Guessed		
Not selected/	False Negative	True Negative		
not guessed	Actual (FN) OGuessed	Actual (TN) OGuessed		

Classes/Choices

Classification Evaluation: the 2-by-2 contingency table

	What is the actual label?			
What label does our system predict? (\downarrow)	Actually Correct	Actually Incorrect		
		meer		
Selected/	True Positive	False Positive		
Guessed	Actual (TP) Guessed	Actual (FP) Guessed		
Not selected/	False Negative	True Negative		
not guessed	Actual (FN) OGuessed	Actual (TN) OGuessed		

Construct this table by *counting* the number of TPs, FPs, FNs, TNs

Contingency Table Example Predicted: Actual:

Contingency Table Example			
Predicted:		\bigcirc	
Actual:		\bigcirc	
	What is the d	actual label?	
What label does our system predict? (\downarrow)	Actually	Actually	
system predict: (\v)	Correct	Incorrect	
Selected/	True Positive	False Positive	
Guessed	(TP)	(FP)	
Not selected/	False Negative	True Negative	
not guessed	(FN)	(TN) 60	

Contingency Table Example							
Predicted:	\bigcirc				\bigcirc		
Actual:				\bigcirc	\bigcirc		
		W	hat is	the c	ictual	label?	
What label does our system predict? (\downarrow)	Actually		A	Actually			
system predict! (V)		Cori	rect		lr	ncorrect	
Selected/	Τrι	True Positive		Fals	se Positive	ר ז	
Guessed	(TP) = 2				(FP)		
Not selected/	False Negative		True	e Negative	Š		
not guessed		(Fl	N)			(TN) 61	

Contingency Table Example				
Predicted:	\bigcirc		\bigcirc	
Actual:			\bigcirc	
	Wł	nat is the a	actual label?	
What label does our system predict? (\downarrow)	Actu	ally	Actually	
system predict! (V)	Corr	ect	Incorrect	
Selected/	True Po	ositive	False Positive	
Guessed	(TP) = 2 $(FP) = 1$			
Not selected/	False Ne	True Negative	7	
not guessed	(FN	J)	(TN) 62	

Contingency Table Example			
Predicted:			
Actual:			
	What is the	e actual label?	
What label does our system predict? (\downarrow)	Actually	Actually	
system predict: (V)	Correct	Incorrect	
Selected/	True Positive	False Positive	
Guessed	(TP) = 2	(FP) = 1	
Not selected/	False Negative True Negativ		
not guessed	(FN) = 1	(TN) 63	

Contingency Table Example			
Predicted:		\bigcirc	
Actual:		\bigcirc	
	What is the d	actual label?	
What label does our system predict? (\downarrow)	Actually	Actually	
system predict! (V)	Correct	Incorrect	
Selected/	True Positive	False Positive	
Guessed	(TP) = 2 (FP) = 1		
Not selected/	False Negative	True Negative	
not guessed	(FN) = 1	(TN) = 1 ₆₄	

Contingency Table Example						
Predicted:		\bigcirc				
Actual:		\bigcirc				
	What is the actual label?					
What label does our system predict? (\downarrow)	Actually	Actually				
system predict: (W)	Correct	Incorrect				
Selected/	True Positive	False Positive				
Guessed	(TP) = 2 $(FP) = 1$					
Not selected/	False Negative	True Negative				
not guessed	(FN) = 1	(TN) = 1 ₆₅				

_

Classification Evaluation: Accuracy, Precision, and Recall Accuracy: % of items correct $\frac{TP + TN}{TP + FP + FN + TN}$

	Actually Correct	Actually Incorrect			
Selected/Guessed	True Positive (TP)	False Positive (FP)			
Not select/not guessed	False Negative (FN)	True Negative (TN)			

Classification Evaluation: Accuracy, Precision, and Recall Accuracy: % of items correct TP + TNTP + FP + FN + TN**Precision**: % of selected items that are correct TP TP + FP

	Actually Correct	Actually Incorrect			
Selected/Guessed	True Positive (TP)	False Positive (FP)			
Not select/not guessed	False Negative (FN)	True Negative (TN)			

Classification Evaluation: Accuracy, Precision, and Recall Accuracy: % of items correct TP + TNTP + FP + FN + TN**Precision**: % of selected items that are correct TP TP + FP**Recall:** % of correct items that are selected TP TP + FN**Actually Correct Actually Incorrect** Selected/Guessed True Positive (TP) False Positive (FP) Not select/not guessed True Negative (TN) False Negative (FN) 68

Q: Where do you want your ideal model ?

Measure this Tradeoff: Area Under the Curve (AUC)

AUC measures the area under this tradeoff curve

Measure this Tradeoff: Area Under the Curve (AUC)

AUC measures the area under this tradeoff curve

 Computing the curve
 You need true labels & predicted labels with some score/confidence estimate

Threshold the scores and for each threshold compute precision and recall

Measure this Tradeoff: Area Under the Curve (AUC)

AUC measures the area under this tradeoff curve

1. Computing the curve

You need true labels & predicted labels with some score/confidence estimate Threshold the scores and for each threshold compute precision and recall

2. Finding the area

How to implement: trapezoidal rule (& others)

In practice: external library like the sklearn.metrics module

Measure A Slightly Different Tradeoff: ROC-AUC

AUC measures the area under this tradeoff curve

1. Computing the curve

You need true labels & predicted labels with some score/confidence estimate

Threshold the scores and for each threshold compute metrics

- 2. Finding the area How to implement: trapezoidal rule (& others)
 - In practice: external library like the sklearn.metrics module

Main variant: ROC-AUC

Same idea as before but with some flipped metrics

A combined measure: F

Weighted (harmonic) average of Precision & Recall

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}}$$

A combined measure: F

Weighted (harmonic) average of Precision & Recall

A combined measure: F

Weighted (harmonic) average of Precision & Recall

$$F = \frac{(1 + \beta^2) * P * R}{(\beta^2 * P) + R}$$

Balanced F1 measure:
$$\beta=1$$

 $F_1 = \frac{2 * P * R}{P + R}$

P/R/F in a Multi-class Setting: Micro- vs. Macro-Averaging

If we have more than one class, how do we combine multiple performance measures into one quantity?

Macroaveraging: Compute performance for each class, then average.

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

P/R/F in a Multi-class Setting: Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average.

macroprecision =
$$\sum_{c} \frac{\text{TP}_{c}}{\text{TP}_{c} + \text{FP}_{c}} = \sum_{c} \text{precision}_{c}$$

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

microprecision =
$$\frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FP_{c}}$$

P/R/F in a Multi-class Setting: Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average.

when to prefer the macroaverage?

macroprecision =
$$\sum_{c} \frac{TP_{c}}{TP_{c} + FP_{c}} = \sum_{c} \text{precision}_{c}$$

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

microprecision =
$$\frac{\sum_{c} TP_{c}}{\sum_{c} TP_{c} + \sum_{c} FP_{c}}$$

when to prefer the microaverage?

Micro-vs. Macro-Averaging: Example

Class 1

Class 2

Micro Ave. Table

	Truth	Truth		Truth	Truth		Truth	Truth
	: yes	: no		: yes	: no		: yes	: no
Classifier: yes	10	10	Classifier: yes	90	10	Classifier: yes	100 (90+10)	20 (10+10)
Classifier:	10	970	Classifier:	10	890	Classifier:	20	1860
no			no			no		

Macroaveraged precision: (10/10+10) + (90/90+10)/2 = (0.5 + 0.9)/2 = 0.7Microaveraged precision: 100/100+20 = .83

Microaveraged score is dominated by score on frequent classes

Q: Is this a good result?

Q: Is this a good result?

Q: Is this a good result?