CMSC 478:
Machine Learning

KMA Solaiman — ksolaima@umbc.edu

ML TOOLKITS

Toolkit Basics

Machine learning involves working with data

— analyzing, manipulating, transforming, ...

More often than not, it’'s numeric or has a
natural numeric representation

Natural language text is an exception, but
this too can have a numeric representation

A common data model is as a N-dimensional
matrix or tensor

These are supported in Python via libraries

Typical Python Libraries

numpy, scipy

* Basic mathematical libraries for dealing with matrices
and scientific/mathematical functions

pandas, matplotlib

* Libraries for data science & plotting Lots of

documentation
sklearn (scikit-learn) available for all

A whole bunch of implemented classifiers [eiiiaEs=0e =

torch (pytorch) and tensorflow
* Frameworks for building neural networks

What is Numpy?

* NumPy supports features needed for ML
— Typed N-dimensional arrays (matrices/tensors)
— Fast numerical computations (matrix math)
— High-level math functions

* Python does numerical computations
slowly and lacks an efficient matrix
representation

* 1000 x 1000 matrix multiply
— Python triple loop takes > 10 minutes!
—Numpy takes ~0.03 seconds

NumPy Arrays Can Represent .. ’3

Structured lists of numbers

Px

* Vectors [py]

* Matrices Dz
* Images aj1 - Gqn
* Tensors [P]
Am1 *°° Amn

e Convolutional Neural
Networks

NumPy Arrays Can Represent .. &

Structured lists of numbers

Vectors
Matrices
Images
Tensors

Convolutional Neural
Networks

12

NumPy Arrays Can Represent .. ﬁ

Structured lists of numbers

T(es) .
023
013
* \Vectors . ‘i\‘
T le)
 Matrices o1 22
* Images
bf=

* Tensors

e Convolutional Neural
Networks

13

NumPy Arrays, Basic Properties

>>> 1mport numpy as np

>>> a= np.array([[1,2,3],[4,5,06]],dtype=np.float32)
>>> print (a.ndim, a.shape, a.dtype)

2 (2, 3) float32

>> print (a)
[([1. 2. 3
6

.]
(4. 5. -]
Arrays:

1. Can have any number of dimensions, including zero (a scalar)
2. Are typed: np.uint8, np.int64, np.float32, np.float64
3. Are dense: each element of array exists and has the same type

NumPy Array Indexing, Slicing

al[0,0] # top-left element

al0,-1] # first row, last column

al0,:] # first row, all columns

al:,0] # first column, all rows
al0:2,0:2] # 1st 2 rows, lst 2 columns
Notes:

— Zero-indexing
— Multi-dimensional indices are comma-separated)
— Python notation for slicing

SciPy @

SciPy builds on the NumPy array object

Adds additional mathematical functions and
sparse arrays

Sparse array: one where most elements =0

An efficient representation only implicitly
encodes the non-zero values

Access to a missing element returns O

SciPy sparse array use case @

NumPy and SciPy arrays are numeric

We can represent a document’s content by a
vector of features

Each feature is a possible word

A feature’s value might be any of:
— TF: number of times it occurs in the document;
— TF-IDF: ... normalized by how common the word is

— and maybe normalized by document length ...

SciPy sparse array use case @

Maybe only model 50k most frequent words found
in @ document collection, ignoring others

Assign each unique word an index (e.g., dog:137)
— Build python dict w from vocabulary, so w[‘dog’]=137
The sentence “the dog chased the cat”

— Would be a numPy vector of length 50,000

— Or a sciPy sparse vector of length 4

An 800-word news article may only have 100
unique words; The Hobbit has about 8,000

https://en.wikipedia.org/wiki/The_Hobbit

K sciPy.or More on
a ry-org SciPy

SciPy Tutorial

See the SciPy
tutorial Web

pages

e Introduction
e Basic functions
e Special functions (scipy.special)

e [ntegration (scipy.integrate)

e Optimization (scipy.optimize)

e Interpolation (scipy.interpolate)

e Fourier Transforms (scipy.fft)

e Signal Processing (scipy.signal)

e Linear Algebra (scipy.linalg)

e Sparse eigenvalue problems with ARPACK

e Compressed Sparse Graph Routines (scipy.sparse.csgraph)
e Spatial data structures and algorithms (scipy.spatial)

e Statistics (scipy.stats)

e Multidimensional image processing (scipy.ndimage)

File 10 (scipy.io)

https://docs.scipy.org/doc/scipy/reference/tutorial/
https://docs.scipy.org/doc/scipy/reference/tutorial/

’ scikit

Home Installation Documentation ~ Examples https://sklearn.or

scikit-learn

Machine Learningin Python

Classification Regression Clustering
Identifying to which category an object Predicting a continuous-valued attribute Automatic grouping of similar objects into
belongs to. associated with an object. sets.
Applications: Spam detection, Image Applications: Drug response, Stock prices. Applications: Customer segmentation,
recognition. Algorithms: SVR, ridge regression, Lasso, Grouping experiment outcomes
Algorithms: SVM, nearest neighbors, — Examples Algorithms: k-Means, spectral clustering,
random forest, ... — Examples mean-shift, ... — Examples
Dimensionality reduction Model selection Preprocessing
Reducing the number of random variables to Comparing, validating and choosing Feature extraction and normalization.
consider. parameters and models. Application: Transforming input data such as
Applications: Visualization, Increased Goal: Improved accuracy via parameter text for use with machine learning algorithms.
efficiency tuning Modules: preprocessing, feature extraction.
Algorithms: PCA, feature selection, non- Modules: grid search, cross validation, — Examples
negative matrix factorization. — Examples metrics. — Examples

20

https://sklearn.org/

How easy is this?

https.//scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
>>> from sklearn.datasets import load 1iris
>>> from sklearn.linear model import LoglsticRegression
>>> X, y = load iris(return X y=True)
/ \
features on
data labels

>>> clf = LogisticRegression (random state=0) .fit (X, vy)

DATA & EVALUATION

Central Question: How Well Are We Doing?

* Precision,

Recall, F1
* Accuracy
* Log-loss

Classification . ROC-AUC

* (Root) Mean Square Error
* Mean Absolute Error

Regression

Clustering

e Mutual Information
* \/-score

the task: what kind
of problem are you
solving? 21

Evaluation Metrics

Precision, _
Recall, F1 This does

* Accuracy not have to
Log-loss

Classification . ROC-AUC

be the same
thing as the

* (Root) Mean Square Error |OS§
* Mean Absolute Error function

S you
optimize

Regression

Clustering

* Mutual Information
* \/-score

the task: what kind
of problem are you
solving? 32

Evaluation methodology (1)

Standard methodology:

1. Collect large set of examples with correct
classifications (aka ground truth data)

2. Randomly divide collection into two disjoint
sets: training and test (e.qg., via a 90-10% split)

3. Apply learning algorithm to training set giving
hypothesis H

4. Measure performance of H on the held-out
test set

https://en.wikipedia.org/wiki/Ground_truth

Evaluation methodology (2)

* Important: keep the training and test sets
disjoint!
* Study efficiency & robustness of algorithm:

repeat steps 2-4 for different training sets &
training set sizes

* On modifying algorithm, restart with step 1 to
avoid evolving algorithm to work well on just this
collection

Evaluation methodology (2)

* Important: keep the training and test sets
disjoint!

* Study efficie But Not f algorithm:

repeat step T Ko pning sets &

Sellh-gdge - cae test data to

* On modifyin@ (el =l e[S with step 1 to
avoid evolving ¢ rork well on just this
collection

35

Experimenting with Machine Learning
Models

All your data
L Dev Test

36

. ﬁ'. -
/’ 4

’ : 4 ‘
. r B o - re e
11 A
! o | ;] '
4 -
’ iy 5
/ g - ﬂ - . "y
‘e

(IN YOUR TEST DAIA

Evaluation methodology (3)

Common variation on methodology:

1. Collect set of examples with correct classifications

2. Randomly divide it into two disjoint sets:
development & test; further divide development
into devtrain & devtest

3. Apply ML to devtrain, creating hypothesis H| Ground

truth data

4. Measure performance of H w.r.t.

devtest data /\

TEST

5. Modify approach, repeat 3-4 as needed | P*¥

6. Final test on test data

Evaluation methodology (4)

C

~

* Only devtest data used for evalua-
tion during system development classifications

7° When all development has ended,
test data used for final evaluation

* Ensures final system not influenced
by test data

3.« If more development needed, get H tfl:zudlﬁa

new dataset!

4,
devtest data /L

5. Modify approach, repeat 3-4 as needed | P*¥

sets:
development

6. Final test on test data

Evaluation with different dev-test

(clf, data, start, end):
Splitti

train_data = data.subset(examples=range(start, end))
test_data = data.subset(examples=range(end))

pare training and testing
X_train = train_data.inputs
y_train = train_data.values
X_test = test_data.inputs
y_test = test_data.values
Initialize Decision Tree classifier
clf = clf.fit(X_train, y_train)
Predict on test set

y_pred = clf.predict(X_test)

accuracy

accuracy = accuracy_score(y_test, y_pred)

accuracy

Initialize classifier

clf = DecisionTreeClassifier()

test for different

train_and_test(clf, zoo,

train_and_test(clf, zoo,

train_and_test(clf, zoo,

train_and_test(clf, zoo,

Evaluation with different dev-test

 We hold out 10 data items for test; train on
the other 91; show the accuracy on the test
data

* Doing this four times for different test
subsets shows accuracy from 80% to 100%

 What'’s the true accuracy of our approach?

42

K-fold Cross Validation

Problems:
— getting ground truth data expensive
— need different test data for each test

— experiments needed to find right feature space &
parameters for ML algorithms

Goal: minimize training+test data needed

Idea: split training data into K subsets; use K-1
for training and one for development testing

Repeat K times and average performance
Common K values are 5 and 10

All Data

Training data Test data

Fold1l || Fold2 || Fold3 || Fold4 || Fold5 |

Splitl | Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 2 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

> Finding Parameters
Split 3 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split4 | Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split5 | Fold1 || Fold2 | Fold3 || Fold4 | Fold5 @/

Final evaluation = Test data

45

sklearn.model_selection.KFold

class sklearn.model_selection.KFold(n_splits=5, * shuffle=False, random_state=None) [source]

K-Fold cross-validator.

Provides trainftest indices to split data in train/test sets. Split dataset into k consecutive folds (without shuffling by default).
Each fold is then used once as a validation while the k - 1 remaining folds form the training set.

Read more in the User Guide.

For visualisation of cross-validation behaviour and comparison between common scikit-learn split methods refer to Visualizing
cross-validation behavior in scikit-learn

Parameters: n_splits : int, default=5
Number of folds. Must be at |least 2.

Changed in version 0.22: n_splits default value changed from 3 to 5.

shuffle : bool, default=False
Whether to shuffle the data before splitting into batches. Note that the samples within each split will not be
shuffled.

random_state : int, RandomState instance or None, default=None
When shuffle is True, random_state affects the ordering of the indices, which controls the randomness
of each fold. Otherwise, this parameter has no effect. Pass an int for reproducible output across multiple
function calls. See Glossary.

46

sklearn.model_ selection.StratifiedKFold

class sklearn.model_selection.StratifiedKFold(n_splits=5, * shuffle=False, random_state=None) [source]

Stratified K-Fold cross-validator.
Provides train/test indices to split data in train/test sets.

This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving the
percentage of samples for each class.

e Takes class information into account to avoid
building folds with imbalanced class

distributions (for binary or multiclass
classification tasks).

47

Leave one out Cross Validation

Sklearn also has a LeaveOneOut function that

Provides train/test indices to split data in
train/test sets. Each sample is used once as a test

set (singleton) while the remaining samples form
the training set.

LeaveOneOut() is equivalent
to KFold(n_splits=n) where n is the number of
samples.

K-fold cross validation can be too pessimistic,
since it only trains with 80% or 90% of the data

The leave one out evaluation is an alternative

Learning curve (1)

A learning curve shows accuracy on test set as a
function of training set size or (for neural
networks) number of epochs

T T | :?W %? |Iﬁ‘"||lv
AR st oW
/ \ S ¥ X
0.9 F Q%eaff ¥ i

08 | ¥

0.7 |

% correct on test set

0.6 ||

0.5 ke

0.4

0 20 40 60 80 100
Training set size

https://en.wikipedia.org/wiki/Learning_curve_(machine_learning)

Learning curve

 When evaluating ML algorithms, steeper
learning curves are better

* They represents faster learning with less data

performance

/ el Here the system
’ e with the red curve
e is better since it
- requires less data
to achieve desired
accuracy

Training set size

EVALUATION METRICS

Classification Evaluation:
the 2-by-2 contingency table

Let’s assume there are two classes/labels

@O

Assume ‘ is the “positive” label

Given X, our classifier predicts either label

o(@1%) vs. p(()IX)

52

Classification Evaluation:
the 2-by-2 contingency table

What label o{oes our Actually Actually
system predict? ({/)
Correct Incorrect

Selected/
Guessed

Not selected/
not guessed

Classes/Choices

Classification Evaluation:
the 2-by-2 contingency table

What label o{oes our Actually Actually
system predict? ({/)
Correct Incorrect

Selected/ True Positive
GUESSEd Actual (TP) Guessed

Not selected/
not guessed

Classes/Choices

Classification Evaluation:
the 2-by-2 contingency table

What label does our A
ctuall Actuall
system predict? ({/) Y Y
Correct Incorrect

Selected/ True Positive False Positive
GUESSEd Actual (TP) Guessed Actual (FP) Guessed

Not selected/
not guessed

Classes/Choices

Classification Evaluation:
the 2-by-2 contingency table

What label does our A
ctuall Actuall
system predict? ({/) Y Y
Correct Incorrect

Selected/ True Positive False Positive
GUESSEd Actual (TP) Guessed Actual (FP) Guessed

XX [Ta VA False Negative
not guessed (FN)

Actual Guessed

Classes/Choices

Classification Evaluation:
the 2-by-2 contingency table

What label does our A
ctuall Actuall
system predict? ({/) Y Y
Correct Incorrect

Selected/ True Positive False Positive

Guessed C (TP) @ O (FP) e

Actual Guessed Actual Guessed
VXY [Ya (s VA False Negative True Negative
nOt guessed Aga/ (FN) Gagged AQG/ (TN) Gnged

Classes/Choices

Classification Evaluation:
the 2-by-2 contingency table

What label does our A
ctuall Actuall
system predict? ({/) Y Y
Correct Incorrect

Selected/ True Positive False Positive

® ap O, O (rp) 9,

VXY [Ya (s VA False Negative True Negative

A () RS OR L |) IS

Actual Guessed Actual

not guessed

Guessed

‘ O Construct this table by counting
the number of TPs, FPs, FNs, TNs

Classes/Choices

Contingency Table Example

Predicted: O ‘ ‘ ‘ O
Actual: ‘ ‘ ‘ O O

Contingency Table Example

Predicted:

Actual:

What label does our A
ctuall Actuall
system predict? ({/) Y Y
Correct Incorrect

Selected/ True Positive False Positive
Guessed (TP) (FP)

VI EYI[Tall VA False Negative True Negative
not guessed (FN) (TN)

Contingency Table Example

Predicted: ‘ ‘
Actual: ‘ '

What label does our A
ctuall Actuall
system predict? ({/) Y Y
Correct Incorrect

Selected/ True Positive False Positive
Guessed (TP) =2 (FP)

VI EYI[Tall VA False Negative True Negative
not guessed (FN) (TN)

Contingency Table Example

Predicted: ‘
Actual: O

What label does our A
ctuall Actuall
system predict? ({/) Y Y
Correct Incorrect

Selected/ True Positive False Positive
Guessed (TP) =2 (FP) =1

VI EYI[Tall VA False Negative True Negative
not guessed (FN) (TN)

Contingency Table Example

Predicted: O
Actual: '

What label does our A
ctuall Actuall
system predict? ({/) Y Y
Correct Incorrect

Selected/ True Positive False Positive
Guessed (TP) =2 (FP) =1

VOB [Ta VA False Negative True Negative
not guessed (FN) =1 (TN)

Contingency Table Example

Predicted: O
Actual: O

What label does our A
ctuall Actuall
system predict? ({/) Y Y
Correct Incorrect

Selected/ True Positive False Positive
Guessed (TP) =2 (FP) =1

XY [T (s VA False Negative True Negative
not guessed (FN) =1 (TN) =1

Contingency Table Example

Predicted:

Actual:

What label does our A
ctuall Actuall
system predict? ({/) Y Y
Correct Incorrect

Selected/ True Positive False Positive
Guessed (TP) =2 (FP) =1

VI EYI[Tall VA False Negative True Negative
not guessed (FN) =1 (TN) =1

Classification Evaluation:

Accuracy, Precision, and Recall

Accuracy: % of items correct
TP + TN

TP + FP + FN + TN

Actually Correct Actually Incorrect

Selected/Guessed True Positive (TP) False Positive (FP)

Not select/not guessed False Negative (FN) True Negative (TN)

Classification Evaluation:

Accuracy, Precision, and Recall
Accuracy: % of items correct
TP + TN

TP + FP + FN + TN

Precision: % of selected items that are correct
TP

TP + FP

Actually Correct Actually Incorrect

Selected/Guessed True Positive (TP) False Positive (FP)

Not select/not guessed False Negative (FN) True Negative (TN)

Classification Evaluation:

Accuracy, Precision, and Recall
Accuracy: % of items correct
TP + TN

TP + FP + FN + TN

Precision: % of selected items that are correct
TP

TP + FP

Recall: % of correct items that are selected
TP

TP + FN

Actually Correct Actually Incorrect

Selected/Guessed True Positive (TP) False Positive (FP)

Not select/not guessed False Negative (FN) True Negative (TN)

Classification Evaluation:

Accuracy, Precision, and Recall
Accuracy: % of items correct
TP + TN
TP + FP + FN + TN

Precision: % of selected items that ®
are correct TP ®

TP + FP

Recall: % of correct items that are
selected TP

TP + FN

Actually Correct Actually Incorrect

Selected/Guessed True Positive (TP) False Positive (FP)
Not select/not guessed False Negative (FN) True Negative (TN)

Precision and Recall Present a Tradeoff

Q: Where do you
want your ideal
1 model 2

precision

recall

Precision and Recall Present a Tradeoff

model

model

I mOdel
0
0

| *

precision

recall

Precision and Recall Present a Tradeoff

model

model

I mOdel
0
0

1 e

precision

recall

Precision and Recall Present a Tradeoff

precision

Remember those
hyperparameters: Each
point is a differently
trained/tuned model

recall

Precision and Recall Present a Tradeoff

- e

model

model

precision

Improve overal
model: push the
curve that way

recall

precision

Measure this Tradeoff:
Area Under the Curve (AUC)

AUC measures the area under
this tradeoff curve

*

Improve overall
model: push the
curve that way

0 recall 1

Min AUC: 0 ®

Max AUC: 1 @ 76

precision

Measure this Tradeoff:
Area Under the Curve (AUC)

AUC measures the area under
this tradeoff curve

*

1. Computing the curve

You need true labels & predicted
labels with some

l score/confidence estimate

Threshold the scores and for each

threshold compute precision and
recall

Improve overall
model: push the
curve that way

recall 1

77

Min AUC: 0 ®
Max AUC: 1 @

precision

Measure this Tradeoff:
Area Under the Curve (AUC)

AUC measures the area under this
tradeoff curve

*

1. Computing the curve

You need true labels & predicted labels
with some score/confidence estimate

Threshold the scores and for each
threshold compute precision and recall

2. Finding the area
How to implement: trapezoidal rule (&

others)

Improve overall
model: push the
curve that way

recall 1

, : In practice: external library like the
Min AUC: 0 ® sklearn.metrics module
Max AUC: 1 @ 78

True positive rate

Measure A Slightly Different Tradeoff:
ROC-AUC

AUC measures the area under this tradeoff curve

1. Computing the curve

You need true labels & predicted labels with some
score/confidence estimate

Threshold the scores and for each threshold compute
metrics

2. Finding the area
How to implement: trapezoidal rule (& others)

Improve overall
model: push the
curve that way

In practice: external library like the
sklearn.metrics module

Main variant: ROC-AUC

0 False positive rate 1 Same idea as before but with some
flipped metrics

Min ROC-AUC: 0.5 ®

Max ROC-AUC: 1 @ 79

A combined measure: F

Weighted (harmonic) average of Precision & Recall

1

F = T
+(1—C¥)ﬁ

1
“Pp

A combined measure: F

Weighted (harmonic) average of Precision & Recall

1 ~ (1+p%) +P «R

" a%+(1—a)%_'\(ﬁ2*P)+R

A combined measure: F

Weighted (harmonic) average of Precision & Recall

F_(1+,82) *P xR
- (B**P)+R

Balanced F1 measure: =1
o 2 *P xR
' P+R

P/R/F in a Multi-class Setting:
Micro- vs. Macro-Averaging

If we have more than one class, how do we combine
multiple performance measures into one quantity?

Macroaveraging: Compute performance for each class,
then average.

Microaveraging: Collect decisions for all classes,
compute contingency table, evaluate.

P/R/F in a Multi-class Setting:
Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class,
then average.

TP
macroprecision = 2 TP, +CFPC = 2 precision,
C

C

Microaveraging: Collect decisions for all classes,
compute contingency table, evaluate.

2.c TP
Y. TP + X FP.

microprecision =

P/R/F in a Multi-class Setting:
Micro- vs. Macro-Averaging

Macroaveraging: Compute
performance for each class, then when to prefer the

average. macroaverage?

TP,
macroprecision = Z TP, +CFPC = Z precision,
Cc c

Microaveraging: Collect

decisions for all classes,

compute contingency table, when to prefer the
evaluate. microaverage?

2. TP
2.c TP + 2 FP

microprecision =

Micro- vs. Macro-Averaging: Example

Class 1 Class 2 Micro Ave. Table
Truth | Truth Truth | Truth Truth | Truth
:yes | :no :yes | :no :yes | :no
Classifier: 10 10 Classifier: 90 10 Classifier: | 100 20
yes yes yes (90+10) | (10+10)
Classifier: 10 970 Classifier: 10 890 Classifier: 20 | 1860
no no no

Macroaveraged precision: (10/10+10) + (90/90+10)/2 = (0.5 + 0.9)/2 = 0.7

Microaveraged precision: 100/100+20 = .83

Microaveraged score is dominated by score on frequent classes

Confusion Matrix: Generalizing the 2-by-2
contingency table

C O O
#
#
#

#
H
#

=

+=

Confusion Matrix: Generalizing the 2-by-2
contingency table

@ O
30 9

11
7/ 36 7/
2 3 9

Confusion Matrix: Generalizing the 2-by-2
contingency table

@ O
30 40

30
25 30 50
30 35 35

Confusion Matrix: Generalizing the 2-by-2
contingency table

@ O
7 3

90
4 3 38
3 7/ 90

