## Ensembles

Key Idea: "Wisdom of the crowd"
groups of people can often make better decisions than individuals

Apply this to ML
Learn multiple classifiers and combine their predictions

## Combining Multiple Classifiers by Voting

Train several classifiers and take majority of predictions

For regression use mean or median of the predictions

For ranking and collective classification use some form of averaging

## A common family of approaches <br> is called bagging

## Bagging: Split the Data

Option 1: Split the data into K pieces and train a classifier on each

## Bagging: Split the Data

Q: What can go wrong
Option 1: Split the data into K pieces and train a classifier on each
with option 1?
A: Small sample $\rightarrow$ poor performance

## Bagging: Split the Data

## Option 1: Split the data into K pieces and train a classifier on each

Q: What can go wrong with option 1?

A: Small sample $\rightarrow$ poor performance

Option 2: Bootstrap aggregation (bagging) resampling

## Bagging: Split the Data

Q: What can go wrong

## Option 1: Split the data into K pieces and train a classifier on each

## with option 1?

A: Small sample $\rightarrow$ poor performance

Option 2: Bootstrap aggregation (bagging) resampling

Obtain datasets $D_{1}, D_{2}, \ldots, D_{N}$ using bootstrap resampling from D

Given a
dataset D...

get new datasets $\hat{\text { D }}$ by random sampling with replacement from D

## Bagging: Split the Data

Q: What can go wrong

Option 1: Split the data into K pieces and train a classifier on each
with option 1?
A: Small sample $\rightarrow$ poor performance

Option 2: Bootstrap aggregation (bagging) resampling

Obtain datasets $D_{1}, D_{2}, \ldots, D_{N}$ using bootstrap resampling from D

Train classifiers on each dataset and average their predictions

Given a
dataset D...

replacement
get new datasets $\hat{\text { D }}$ by random sampling with replacement from D

## Bagging: Bootstrap Aggregating

- For b = 1, ..., B do
$-S_{b}=$ bootstrap replicate of $S$
- Apply learning algorithm to $S_{b}$ to learn $h_{b}$
$\square$ Classify new points by unweighted vote:
- $\left[\Sigma_{\mathrm{b}} \mathrm{h}_{\mathrm{b}}(\mathrm{x})\right] / \mathrm{B}>0$


## Bagging Decision Trees

How would it work?

## Bagging Decision Trees

How would it work?
Bootstrap $S$ samples $\left\{\left(X_{1}, Y_{1}\right), \ldots,\left(X_{S}, Y_{S}\right)\right\}$
Train a tree
$t_{s}$ on $\left(X_{s}, Y_{s}\right)$
At test time: $\hat{y}=\operatorname{avg}\left(t_{1}(x), \ldots t_{S}(x)\right.$

## Bagging

$\square$ Bagging makes predictions according to $y=\Sigma_{b} h_{b}(x) / B$
$\square$ Hence, bagging's predictions are $\underline{h}(x)$

## Why does averaging work?

Averaging reduces the variance of estimators


$$
\begin{aligned}
& y=f(x)+\epsilon \\
& f(x)=\sin (\pi x) \\
& \epsilon=N\left(0, \sigma^{2}\right) \\
& \sigma=0.1
\end{aligned}
$$

$$
50 \text { samples }
$$




Averaging is a form of regularization: each model can individually overfit but the average is able to overcome the overfitting

## Random Forests

Bagging trees with one modification

At each split point, choose a random subset of features of size $\mathbf{k}$ and pick the best among these

Train decision trees of depth $\mathbf{d}$

Average results from multiple randomly trained trees

> Q: What's the difference
> between bagging decision trees and random forests?

## Random Forests

Bagging trees with one modification

At each split point, choose a random subset of features of size $\mathbf{k}$ and pick the best among these

Train decision trees of depth $\mathbf{d}$

Average results from multiple randomly trained trees

Q: What's the difference
between bagging decision
trees and random forests?

```
A: Bagging \(\rightarrow\) highly
correlated trees (reuse good features)
```


## Bias, Variance, and Noise

- Variance: E[ $\left(\mathrm{h}\left(\mathrm{x}^{*}\right)-\underline{\mathrm{h}\left(\mathrm{x}^{*}\right)}\right)^{2}$ ]

Describes how much $h\left(x^{*}\right)$ varies from one training set $S$ to another

- Bias: $\left[h\left(x^{*}\right)-f\left(x^{*}\right)\right]$

Describes the average error of $h\left(x^{*}\right)$.

- Noise: $\mathrm{E}\left[\left(\mathrm{y}^{*}-\mathrm{f}\left(\mathrm{x}^{*}\right)\right)^{2}\right]=\mathrm{E}\left[\varepsilon^{2}\right]=\sigma^{2}$

Describes how much $y^{*}$ varies from $f\left(x^{*}\right)$

## Estimated Bias and Variance of Bagging

- If we estimate bias and variance using the same B bootstrap samples, we will have:
- Bias $=(\underline{\mathrm{h}}-\mathrm{y}) \quad$ [same as before]
- Variance $=\Sigma_{\mathrm{k}}(\underline{\mathrm{h}}-\underline{\mathrm{h}})^{2} /(\mathrm{K}-1)=0$
- Hence, according to this approximate way of estimating variance, bagging removes the variance while leaving bias unchanged.
$\square$ In reality, bagging only reduces variance and tends to slightly increase bias


## Bias/Variance Heuristics

- Models that fit the data poorly have high bias: "inflexible models" such as linear regression, regression stumps
- Models that can fit the data very well have low bias but high variance: "flexible" models such as nearest neighbor regression, regression trees
$\square$ This suggests that bagging of a flexible model can reduce the variance while benefiting from the low bias


## Decomposition over an entire data set

$\square$ Given a set of test points

$$
\mathrm{T}=\left\{\left(\mathrm{x}^{*}{ }_{1}, \mathrm{y}^{*}{ }_{1}\right), \ldots,\left(\mathrm{x}^{*}{ }_{\mathrm{n}}, \mathrm{y}^{*}{ }_{\mathrm{n}}\right)\right\},
$$

we want to decompose the average loss:

$$
\underline{L}=\Sigma_{\mathrm{i}} E\left[\mathrm{~L}\left(\mathrm{~h}\left(\mathrm{x}_{\mathrm{i}}^{*}\right), \mathrm{y}_{\mathrm{i}}^{*}\right)\right] / \mathrm{n}
$$

$\square$ We will write it as

$$
\underline{L}=\underline{B}+\underline{V u}-\underline{V b}
$$

where $\underline{B}$ is the average bias, $\underline{V u}$ is the average unbiased variance, and $\underline{\mathrm{Vb}}$ is the average biased variance (We ignore the noise.)
$\square \underline{\mathrm{Vu}}-\underline{\mathrm{Vb}}$ will be called "net variance"

## Algorithms to Study

$\square$ K-nearest neighbors: What is the effect of K?

- Decision trees: What is the effect of pruning?
$\square$ Support Vector Machines: What is the effect of kernel width $\sigma$ ?


## K-nearest neighbor (Domingos, 2000)



- Chess (left): Increasing K primarily reduces Vu
- Audiology (right): Increasing K primarily increases B.


## Size of Decision Trees



- Glass (left), Primary tumor (right): deeper trees have lower B, higher Vu


## Example: 200 linear SVMs (training sets of size 20)

Error: 13.7\%
Bias: 11.7\%
Vu: 5.2\%
Vb: 3.2\%


## Example: 200 RBF SVMs $\sigma=5$

Error: 15.0\%
Bias: 5.8\%
Vu: 11.5\%
Vb: 2.3\%


## Example: 200 RBF SVMs $\sigma=50$



## SVM Bias and Variance

|  | Error | Bias | Var $_{U}$ | Var $_{B}$ | Net var | Tot var |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| linear | 0.137 | 0.117 | 0.052 | 0.032 | 0.020 | 0.084 |
| $\operatorname{rbf} \sigma=5$ | 0.150 | 0.058 | 0.115 | 0.023 | 0.092 | 0.137 |
| $\operatorname{rbf} \sigma=50$ | 0.149 | 0.101 | 0.078 | 0.030 | 0.048 | 0.109 |

$\square$ Bias-Variance tradeoff controlled by $\sigma$

- Biased classifier (linear SVM) gives better results than a classifier that can represent the true decision boundary!


## B/V Analysis of Bagging

- Under the bootstrap assumption, bagging reduces only variance
- Removing Vu reduces the error rate
- Removing Vb increases the error rate
- Therefore, bagging should be applied to low-bias classifiers, because then Vb will be small
$\square$ Reality is more complex!


## Bagging Nearest Neighbor

Bagging first-nearest neighbor is equivalent (in the limit) to a weighted majority vote in which the $k$-th neighbor receives a weight of
$\exp (-(k-1))-\exp (-k)$


Since the first nearest neighbor gets more than half of the vote, it will always win this vote. Therefore, Bagging 1-NN is equivalent to 1-NN.

## Bagging Decision Trees

$\square$ Consider unpruned trees of depth 2 on the Glass data set. In this case, the error is almost entirely due to bias

- Perform 30-fold bagging (replicated 50 times; 10-fold cross-validation)
$\square$ What will happen?


## Bagging Primarily Reduces Bias!

Effect of Bagging for Depth=2


## Questions

$\square$ Is this due to the failure of the bootstrap assumption in bagging?

- Is this due to the failure of the bootstrap assumption in estimating bias and variance?
$\square$ Should we also think of Bagging as a simple additive model that expands the range of representable classifiers?


## Bagging Large Trees?

$\square$ Now consider unpruned trees of depth 10 on the Glass dataset. In this case, the trees have much lower bias.
$\square$ What will happen?

## Answer: Bagging Primarily Reduces Variance



## Bagging of SVMs

$\square$ We will choose a low-bias, high-variance SVM to bag: RBF SVM with $\sigma=5$

## RBF SVMs again: $\sigma=5$



## Effect of 30-fold Bagging: Variance is Reduced



## Effects of 30-fold Bagging

|  | Error | Bias | Var $_{U}$ | Var $_{B}$ | Net var | Tot var |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{rbf} \sigma=5$ | 0.150 | 0.058 | 0.115 | 0.023 | 0.092 | 0.137 |
| bagged rbf $\sigma=5$ | 0.145 | 0.063 | 0.105 | 0.023 | 0.082 | 0.128 |

$\square \mathrm{Vu}$ is decreased by 0.010 ; Vb is unchanged
$\square$ Bias is increased by 0.005

- Error is reduced by 0.005


## A Formal View of Boosting

- given training set $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$
- $y_{i} \in\{-1,+1\}$ correct label of instance $x_{i} \in X$
- for $t=1, \ldots, T$ :
- construct distribution $D_{t}$ on $\{1, \ldots, m\}$
- find weak hypothesis ("rule of thumb")

$$
h_{t}: X \rightarrow\{-1,+1\}
$$

with small error $\epsilon_{t}$ on $D_{t}$ :

$$
\epsilon_{t}=\operatorname{Pr}_{D_{t}}\left[h_{t}\left(x_{i}\right) \neq y_{i}\right]
$$

- output final hypothesis $H_{\text {final }}$


## AdaBoost

[Freund \& Schapire]

- constructing $D_{t}$ :
- $D_{1}(i)=1 / m$
- given $D_{t}$ and $h_{t}$ :

$$
\begin{aligned}
& \begin{aligned}
D_{t+1}(i) & =\frac{D_{t}(i)}{Z_{t}} \cdot \begin{cases}e^{-\alpha_{t}} & \text { if } y_{i}=h_{t}\left(x_{i}\right) \\
e^{\alpha t} & \text { if } y_{i} \neq h_{t}\left(x_{i}\right)\end{cases} \\
& =\frac{D_{t}(i)}{Z_{t}} \cdot \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)
\end{aligned} \\
& \text { where } \quad Z_{t}
\end{aligned}=\text { normalization constant } \quad \begin{aligned}
& \alpha_{t}
\end{aligned}=\frac{1}{2} \ln \left(\frac{1-\epsilon_{t}}{\epsilon_{t}}\right)>0 \text {. }
$$

- final hypothesis:
- $H_{\text {final }}(x)=\operatorname{sign}\left(\sum_{t} \alpha_{t} h_{t}(x)\right)$


## Toy Example

$$
D_{1} \left\lvert\, \begin{array}{|cccc} 
& + & + & \\
& + & & + \\
+ & - & - & \\
+ & & & \\
& & & \\
& & & \\
\hline
\end{array}\right.
$$

## Round 1

$$
\begin{aligned}
& \varepsilon_{1}=0.30 \\
& \alpha_{1}=0.42
\end{aligned}
$$

## Round 2



## Round 3



$$
\begin{aligned}
& \varepsilon_{3}=0.14 \\
& \alpha_{3}=0.92
\end{aligned}
$$

## Final Hypothesis

## H <br> final



* See demo at WWW.research.att.com/~yoav/adaboost


## UCI Experiments

[Freund \& Schapire]

- tested AdaBoost on UCI benchmarks
- used:
- C4.5 (Quinlan's decision tree algorithm)
- "decision stumps": very simple rules of thumb that test on single attributes





## Multiclass Problems

- say $y \in Y=\{1, \ldots, k\}$
- direct approach (AdaBoost.M1):

$$
\begin{gathered}
h_{t}: X \rightarrow Y \\
D_{t+1}(i)=\frac{D_{t}(i)}{Z_{t}} \cdot \begin{cases}e^{-\alpha_{t}} & \text { if } y_{i}=h_{t}\left(x_{i}\right) \\
e^{\alpha_{t}} & \text { if } y_{i} \neq h_{t}\left(x_{i}\right)\end{cases} \\
H_{\text {final }}(x)=\arg \max _{y \in Y} \sum_{t: h_{t}(x)=y} \alpha_{t}
\end{gathered}
$$

- can prove same bound on error if $\forall t: \epsilon_{t} \leq 1 / 2$
- in practice, not usually a problem for "strong" weak learners (e.g., C4.5)
- significant problem for "weak" weak learners (e.g., decision stumps)


## Reducing to Binary Problems

[Schapire \& Singer]

- e.g.:
- say possible labels are $\{a, b, c, d, e\}$
- each training example replaced by five $\{-1,+1\}$-labeled examples:

$$
x, \mathrm{c} \rightarrow \begin{cases}(x, \mathrm{a}), & -1 \\ (x, \mathrm{~b}), & -1 \\ (x, \mathrm{c}), & +1 \\ (x, \mathrm{~d}), & -1 \\ (x, \mathrm{e}), & -1\end{cases}
$$

## AdaBoost.MH

- formally:

$$
h_{t}: X \times Y \rightarrow\{-1,+1\}(\text { or } \mathbb{R})
$$

$$
D_{t+1}(i, y)=\frac{D_{t}(i, y)}{Z_{t}} \cdot \exp \left(-\alpha_{t} v_{i}(y) h_{t}\left(x_{i}, y\right)\right)
$$

where $v_{i}(y)= \begin{cases}+1 & \text { if } y_{i}=y \\ -1 & \text { if } y_{i} \neq y\end{cases}$

$$
H_{\text {final }}(x)=\arg \max _{y \in Y} \sum_{t} \alpha_{t} h_{t}(x, y)
$$

- can prove:

$$
\text { training error }\left(H_{\text {final }}\right) \leq \frac{k}{2} \cdot \Pi Z_{t}
$$

## Using Output Codes

[Schapire \& Singer]

- alternative: reduce to "random" binary problems
- choose "code word" for each label

|  | $\pi_{1}$ | $\pi_{2}$ | $\pi_{3}$ | $\pi_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| a | - | + | - | + |
| b | - | + | + | - |
| c | + | - | - | + |
| d | + | - | + | + |
| e | - | + | - | - |

- each training example mapped to one example per column

$$
x, \mathrm{c} \rightarrow \begin{cases}\left(x, \pi_{1}\right), & +1 \\ \left(x, \pi_{2}\right), & -1 \\ \left(x, \pi_{3}\right), & -1 \\ \left(x, \pi_{4}\right), & +1\end{cases}
$$

- to classify new example $x$ :
- evaluate hypothesis on $\left(x, \pi_{1}\right), \ldots,\left(x, \pi_{4}\right)$
- choose label "most consistent" with results
- training error bounds independent of \# of classes
- may be more efficient for very large \# of classes


## Example: Boosting for Text Categorization

[Schapire \& Singer]

- weak hypotheses: very simple weak hypotheses that test on simple patterns, namely, (sparse) $n$-grams
- find parameter $\alpha_{t}$ and rule $h_{t}$ of given form which minimize $Z_{t}$
- use efficiently implemented exhaustive search
- "How may I help you" data:
- 7844 training examples (hand-transcribed)
- 1000 test examples (both hand-transcribed and from speech recognizer)
- categories: AreaCode, AttService, BillingCredit, CallingCard, Collect, Competitor, DialForMe, Directory, HowToDial, PersonToPerson, Rate, ThirdNumber, Time, TimeCharge, Other.


## Weak Hypotheses

| rnd term |  |
| :---: | :---: |
| 1 collect |  |
| 2 card |  |
| 3 my home |  |
| 4 person? person |  |
| 5 code | [ = - - - - - - - = |
|  | - - - - |
| 6 I | - - . . - - - |
| 7 time | - - - - - - - - 11 |
|  |  |
| 8 wrong number |  |
| 9 how | - - - - = |
|  | _ _ _ . . . . . . . . . - |

## More Weak Hypotheses



## Learning Curves



- test error reaches $20 \%$ for the first time on round...
- 1,932 without confidence ratings
- 191 with confidence ratings
- test error reaches $18 \%$ for the first time on round...
- 10,909 without confidence ratings
- 303 with confidence ratings


## Bias-Variance Analysis of Boosting

$\square$ Boosting seeks to find a weighted combination of classifiers that fits the data well
-Prediction: Boosting will primarily act to reduce bias

## Boosting DNA splice (left) and Audiology (right)



Early iterations reduce bias. Later iterations also reduce variance

## Boosting vs Bagging (Freund \& Schapire)



## Review and Conclusions

- For regression problems (squared error loss), the expected error rate can be decomposed into
$-\operatorname{Bias}\left(x^{*}\right)^{2}+\operatorname{Variance}\left(x^{*}\right)+$ Noise $\left(x^{*}\right)$
- For classification problems (0/1 loss), the expected error rate depends on whether bias is present:
- if $B\left(x^{*}\right)=1: B\left(x^{*}\right)-\left[V\left(x^{*}\right)+N\left(x^{*}\right)-2 V\left(x^{*}\right) N\left(x^{*}\right)\right]$
- if $B\left(x^{*}\right)=0: B\left(x^{*}\right)+\left[V\left(x^{*}\right)+N\left(x^{*}\right)-2 V\left(x^{*}\right) N\left(x^{*}\right)\right]$
- or $\mathrm{B}\left(\mathrm{x}^{*}\right)+\mathrm{Vu}\left(\mathrm{x}^{*}\right)-\mathrm{Vb}\left(\mathrm{x}^{*}\right)$ [ignoring noise]


## Review and Conclusions (2)

$\square$ For classification problems with log loss, the expected loss can be decomposed into noise + bias + variance

$$
E[K L(y, h)]=H(p)+K L(p, \underline{h})+E_{S}[K L(\underline{h}, \mathrm{~h})]
$$

## Sources of Bias and Variance

$\square$ Bias arises when the classifier cannot represent the true function - that is, the classifier underfits the data
$\square$ Variance arises when the classifier overfits the data
-There is often a tradeoff between bias and variance

## Effect of Algorithm Parameters on Bias and Variance

■k-nearest neighbor: increasing k typically increases bias and reduces variance
$\square$ decision trees of depth $D$ : increasing D typically increases variance and reduces bias
$\square$ RBF SVM with parameter $\sigma$ : increasing $\sigma$ increases bias and reduces variance

## Effect of Bagging

- If the bootstrap replicate approximation were correct, then bagging would reduce variance without changing bias
- In practice, bagging can reduce both bias and variance
- For high-bias classifiers, it can reduce bias (but may increase Vu)
- For high-variance classifiers, it can reduce variance


## Effect of Boosting

$\square$ In the early iterations, boosting is primary a bias-reducing method
$\square$ In later iterations, it appears to be primarily a variance-reducing method

