Ensembles

Key Idea: “Wisdom of the crowd”

groups of people can often make better decisions
than individuals

Apply this to ML
Learn multiple classifiers and combine their
predictions



Combining Multiple Classifiers by
Voting

Train several classifiers and take majority of predictions

For regression use mean or median of the
predictions

For ranking and collective classification use some
form of averaging

bagging
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Bagging: Split the Data

Option 1: Split the data into K pieces and
train a classifier on each



Bagging: Split the Data

Q: What can go wrong

Option 1: Split the data into K pieces and with option 17
train a classifier on each A: Small sample =

poor performance
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Bagging: Split the Data

Q: What can go wrong

Option 1: Split the data into K pieces and with option 17
train a classifier on each A: Small sample >

poor performance

Option 2: Bootstrap
aggregation (bagging)
resampling
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Bagging: Split the Data

Option 1: Split the data into K pieces and
train a classifier on each A: Small sample >

poor performance

Option 2: Bootstrap
aggregation (bagging) Given a
resampling dataset D...

Obtain datasets D1, D2, ..., Dn
using bootstrap resampling
from D

sampling with
replacement

get new datasets D by
random sampling with
replacement from D
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Bagging: Split the Data

Option 1: Split the data into K pieces and
train a classifier on each A: Small sample >

poor performance

Option 2: Bootstrap

Train classifiers on each
dataset and average their
predictions

aggregation (bagging) Given a
resampling dataset D...
Obtain datasets D1, D2, ..., Dn - u -
using bootstrap resampling ~ sampling with —
from D replacement
N NN

get new datasets D by
random sampling with
replacement from D



Bagging: Bootstrap Aggregating

iForb=1, ..., Bdo
— S, = bootstrap replicate of S
— Apply learning algorithm to S, to learn h,

1 Classify new points by unweighted vote:
— [T hy(x))/B >0




Bagging Decision Trees

How would it work?



Bagging Decision Trees

How would it work?
Bootstrap S samples {(X,, Y;), ..., (Xs, Y<)}
Train a tree t. on (X, Y,)
At test time: y = avg(ti1(x) , ... ts(x)



Bagging

1 Bagging makes predictions according to
y =2, h,(x)/B
1 Hence, bagging’s predictions are h(x)




Why does averaging work?

Averaging reduces the variance of estimators

y = f(z)+e
f(x) = Sln(;riv) | ‘f|v1lvocﬂi\el‘l‘ Or?r\_l? diduar s o)
€= N(O’ o ) .‘| " f ' wmmm \ean of All Fits
c=0.1 o5 A KA B —(x)
' i) f = = = Squared Error
50 samples
0
2
gn(T) = 0o + 6hz + 022" + ... + Opz" \
— ) -0.5 R
oy
g %)
05| gl
— 9, 1 4 N | |
0 -1 05 0 05 1
-0.5
_11 -05 0 05 1

Averaging is a form of regularization: each model can individually overfit but the
average is able to overcome the overfitting -



Random Forests

Bagging trees with one modification

At each split point, choose a random subset of features
of size K and pick the best among these

Train decision trees of depth d

Average results from multiple randomly trained trees



Random Forests

Bagging trees with one modification

At each split point, choose a random subset of features
of size K and pick the best among these

Train decision trees of depth d

Average results from multiple randomly trained trees

Q: What'’s the difference A: Bagging = highly

between bagging decision correlated trees (reuse good
trees and random forests? features)
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Bias, Variance, and Noise

1 Variance: E[ (h(x*) — h(x*))?]

Describes how much h(x*) varies from one
training set S to another

1 Bias: [h(x*) — f(x*)]
Describes the average error of h(x™).

1 Noise: E[ (y* — f(x*))2 ] = E[¢2] = o2
Describes how much y* varies from f(x*)




Estimated Bias and Variance of
Bagging

1 If we estimate bias and variance using the same

B bootstrap samples, we will have:

— Bias = (h—y) [same as before]
— Variance = %, (h—h)?/(K-1)=0

1 Hence, according to this approximate way of
estimating variance, bagging removes the
variance while leaving bias unchanged.

1 In reality, bagging only reduces variance and
tends to slightly increase bias




Bias/VVariance Heuristics

1 Models that fit the data poorly have high bias:
“Inflexible models” such as linear regression,
regression stumps

1 Models that can fit the data very well have low
bias but high variance: “flexible” models such as
nearest neighbor regression, regression trees

1 This suggests that bagging of a flexible model
can reduce the variance while benefiting from
the low bias




Decomposition over an entire
data set

1 Given a set of test points

T={x"1y 1) (XY 0k
we want to decompose the average loss:

L =2 E[ L(h(x%), y*) 1/ n
1 \We will write It as
L=B+Vu-Vb

where B is the average bias, VU is the average
unbiased variance, and Vb is the average
biased variance (We ignore the noise.)

1 Vu — Vb will be called “net variance”




Algorithms to Study

1 K-nearest neighbors: What is the effect of
K?

1 Decision trees: What is the effect of
pruning?

1 Support Vector Machines: What is the
effect of kernel width c?




K-nearest neighbor
(Domingos, 2000)

40
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1 Chess (left): Increasing K primarily reduces Vu
1 Audiology (right): Increasing K primarily
iIncreases B.




Size of Decision Trees

Loss (%)
Loss (%)

1 Glass (left), Primary tumor (right): deeper
trees have lower B, higher Vu




Example: 200 linear SVMs
(training sets of size 20)

Error: 13.7%
Bias: 11.7%
Vu: 5.2%
Vb: 3.2%




Example: 200 RBF SVMs

c=5

Error: 15.0%
Bias: 5.8%
Vu: 11.5%
Vb: 2.3%

True boundary
Bias=1

varlU > 0.3
varU > 0.2




Example: 200 RBF SVMs
o =50

Error: 14.9%
Bias: 10.1%
Vu: 7.8%
Vb: 3.0%

True boundary
Bias=1

varU > 0.3
varU > 0.2




SVM Bias and Variance

Error Bias Vary Varg Net var Tot var
linear 0.137 0.117 0.052 0.032 0.020 0.084
rbf e =5 0.150 0.058 0.115 0.023 0.092  0.137
rbf ¢ =50 0.149 0.101 0.078 0.030 0.048  0.109

1 Bias-Variance tradeoff controlled by o

1 Biased classifier (linear SVM) gives
better results than a classifier that can
represent the true decision boundary!
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B/V Analysis of Bagging

1 Under the bootstrap assumption,
bagging reduces only variance

— Removing Vu reduces the error rate
— Removing Vb increases the error rate

1 Therefore, bagging should be applied to
low-bias classifiers, because then Vb will
be small

1 Reality is more complex!
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Bagging Nearest Neighbor

Bagging first-nearest
neighbor is equivalent
(in the limit) to a
weighted majority vote
In which the k-th
neighbor receives a
weight of

exp(-(k-1)) — exp(-k)
Neighbor Rank

Since the first nearest neighbor gets more than half of the vote, it will
always win this vote. Therefore, Bagging 1-NN is equivalent to 1-NN.




Bagging Decision Trees

1 Consider unpruned trees of depth 2 on the
Glass data set. In this case, the error s
almost entirely due to bias

1 Perform 30-fold bagging (replicated 50
times; 10-fold cross-validation)

1 \What will happen?
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Bagging Primarily Reduces
Bias!

Effect of Bagging for Depth=2

Mean Error

Bias

Vb Biased Variance,

bagged-c4




Questions

1|s this due to the failure of the bootstrap
assumption in bagging?
1 |s this due to the failure of the bootstrap

assumption in estimating bias and
variance?

1 Should we also think of Bagging as a
simple additive model that expands the
range of representable classifiers?




Bagging Large Trees?

1 Now consider unpruned trees of depth 10
on the Glass dataset. In this case, the
trees have much lower bias.

1 What will happen?
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Answer: Bagging Primarily
Reduces Variance

Effect of Bagging for Depth=10

\e Mean Error

+ Bias

Vu Unbiased Varjance
——= \/b Biased Variarce

bagged-c4
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Bagging of SVMs

1 \We will choose a low-bias, high-variance
SVM to bag: RBF SVM with 6=5
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Effects of 30-fold Bagging

Error Bias Vary Varg Net var Tot var
rtbf o0 =5 0.150 0.058 0.115 0.023 0.092  0.137
bagged rbf ¢ =5 0.145 0.063 0.105 0.023 0.082  0.128

1Vu is decreased by 0.010; Vb is
unchanged

1 Bias is increased by 0.005
1 Error is reduced by 0.005




A Formal View of Boosting

e given training set (z,vy),---, (zm,ym)
ey, € {—1,+41} correct label of instance z; € X
efort=1,...,7T:
construct distribution D; on {1,... m}
find weak hypothesis (“rule of thumb”)
ht X — {—1,—|—1}
with small error ¢, on Dy:
et = Prp [hi(z;) # ;)

e output final hypothesis Hpal



AdaBoost
[Freund & Schapire]
e constructing Dy:

given D; and hy:

Dy, (i) = Dy(i) . e if y; = hy(;)
t+1 Zt ettt if Y; # ht(xi)
Dy (i)

= -exp(—at y; he(w;))

where Z; = normalization constant

atzéln(lzjt) >0

e final hypothesis:

Hiina () = sign [~ aghe(x)



Toy Example




Round 1

£1=0.30



€9=0.21



£3=0.14
@ — 05=0.92




Final Hypothesis

final

=sign| .42 +0.65 +0.92

* See demo at
www.research.att.com/ yoav/adaboost



UCI Experiments
[Freund & Schapire]

e tested AdaBoost on UCI benchmarks

e used:

C4.5 (Quinlan’s decision tree algorithm)
“decision stumps™: very simple rules of thumb
that test on single attributes

‘ eye color = brown ? ‘ ‘ height > 5 feet ? ‘
yes k ,% H\O\
predict predict predict predict
+1 -1 -1 +1

0O 5 10 15 20 25 30 0O 5 10 15 20 25 30

boosting Stumps boosting C4.5



Multiclass Problems
esayyeY ={1,...k}
e direct approach (AdaBoost.M1):

htIX—>Y

Dy, (i) = Dy(4) , et if y; = hy(z;)
t+1 Zt et if Y, # ht(x,&-)

Hppg(r) =argmax ¥ oy
na YeY t:hy(x)=y

e can prove same bound on error if V¢ : e, < 1/2

in practice, not usually a problem for “strong”
weak learners (e.g., C4.5)

significant problem for “weak” weak learners
(e.g., decision stumps)



Reducing to Binary Problems
[Schapire & Singer]

°ec.g.:
say possible labels are {a,b,c,d, e}
each training example replaced by five
{—1,+1}-labeled examples:

(z,2) , 1
(x,b) . —1
z,c —1{(z,c), +1
(z,d) , —1
(x,e) . —1




AdaBoost. MH

e formally:

hy: X xY — {—1,4+1}(or R)

Dy (i, y)

Dy (iy) === - exp(=ay v;(y) hy(.v))

—1 ity #y

Hﬁnal(x) — arg Iyneai)/( % O‘tht(xa y)

where v, (y)

e Cadll Prove:

1 Z

| =

training error( Hgp,q1) <



Using Output Codes

[Schapire & Singer]

e alternative: reduce to “random” binary problems

e choose “code word” for each label

T T2 73

-~ +
-+
_|__
_|_

o o o0 o o

-+

_|_

_|_

+ |2

+ 4+

e each training example mapped to one example per

column ,
(J? 7T1) , —|—1
(x 7T2) y —1
r,C — (r.my) . —1
(z,m4) , +1
e to classify new example z:
evaluate hypothesis on (z,7), ..., (z,7y)

choose label “most consistent’” with results

e training error bounds independent of # of classes

e may be more efficient for very large # of classes



Example: Boosting for Text Categorization
[Schapire & Singer]

e weak hypotheses: very simple weak hypotheses
that test on simple patterns, namely, (sparse)
n-grams

find parameter «; and rule /; of given form
which minimize Z;
use efficiently implemented exhaustive search

e “How may I help you” data:

7844 training examples (hand-transcribed)
1000 test examples (both hand-transcribed and
from speech recognizer)

categories: AreaCode, AttService, BillingCredit,
CallingCard, Collect, Competitor, DialForMe, Directory,
HowToDial, PersonToPerson, Rate, ThirdNumber, Time,
TimeCharge, Other.



Weak Hypotheses

rnd term AC AS BC CC COCMDM DI HO PP RA 3N TI TC OT
1 collect | | -
[IIY T QU II|?
IT """ "I "JI™
2 card I_'l___'_-""'
- — - g - - — - - - - - - - -
3 my home II"_-_I_"III'
4 person ? person S — - - I - -
I1 -1 | Il B
5 code B g = - - - I_
g - — - — - - - - — = = = = =
61 |- - -4 - - - - - - _ _ _ - — _
- -y - - — — = — - — - — —
7 time '__"__-_'-_ll_
____________ . w —
8 wrong number | -

how




More Weak Hypotheses

rnd term AC AS BC CC COCMDM DI HO PP RA 3N TI TC OT
10 call — e — = - = = - — - - = =
11 . om - - . - m
seven 5 - - - I -
12 trying to T L — I —
I3 and == | _ = = - o = - M o - = =
14 third - - | | _
IT-"TI"T"JI"01T T
15 to |\ _ _ _ _ _ _ e o
_________ I
16 for m - = o - - — = _ - - I -
17 charges g - - - - _ _ . I | | -
18 dial - m - _ —
ial o - - - = - - - nq
19 just U




Learning Curves

50 \\ T \" | T roTTTTTT T roTTTTTT T rToTTTTTT

45 | A conf (test) —— |

conf (train)
40 - N noconf (test) —— |

noconf (train) -
9 30 r 1
5 25 r .
= 20 W T

\n\' “\"”‘N ‘‘‘‘‘ X

15 r S T - 7
10 | S

O el L ] T T .

1 10 100 1000 10000

# rounds of boosting

e test error reaches 20% for the first time on round...

1,932 without confidence ratings
191 with confidence ratings

e test error reaches 18% for the first time on round...

10,909 without confidence ratings
303 with confidence ratings



Bias-Variance Analysis of

Boosting

1 Boosting seeks to find a weighted
combination of classifiers that fits the data
well

1 Prediction: Boosting will primarily act to
reduce bias




Boosting DNA splice (left) and
Audiology (right)

S

O

B e ) B i I

L LA =1 I RN, =
- -y Ry Ll S b e S e SRR e e

9
-
6
5
4
3
1
0

1 | |

10 ) 10 15
Round Round

Early iterations reduce bias. Later iterations also
reduce variance




Boosting vs Bagging
(Freund & Schapire)

-1
o
=
-
=
bn
=
e
[aa]
©
w
-
g
S
m

1 1 1
10 15 20
Error rate of AdaBoost with C4




Review and Conclusions

1 For regression problems (squared error loss),
the expected error rate can be decomposed
into
— Bias(x*)? + Variance(x*) + Noise(x*)

1 For classification problems (0/1 loss), the
expected error rate depends on whether bias
IS present:

— if B(x*) = 1: B(X*) = [V(x*) + N(x*) = 2 V(x*) N(x*)]
— if B(x*) = 0: B(X*) + [V(x*) + N(x*) = 2 V(x*) N(x*)]
— or B(x*) + Vu(x*) — Vb(x*) [ignoring noise]




Review and Conclusions (2)

1 For classification problems with log loss,
the expected loss can be decomposed into
noise + bias + variance

E[ KL(y, h) ] = H(p) + KL(p, h) + E[ KL(h, h) ]




Sources of Bias and Variance

1 Bias arises when the classifier cannot
represent the true function — that is, the
classifier underfits the data

1 VVariance arises when the classifier overfits
the data

1 There Is often a tradeoff between bias and
variance




Effect of Algorithm Parameters

on Bias and Variance

1 k-nearest neighbor: increasing k typically
Increases bias and reduces variance

1 decision trees of depth D: increasing D
typically increases variance and reduces

bias
1 RBF SVM with parameter : increasing o
Increases bias and reduces variance




Effect of Bagging

1 If the bootstrap replicate approximation
were correct, then bagging would reduce
variance without changing bias

1 In practice, bagging can reduce both bias
and variance

— For high-bias classifiers, it can reduce bias
(but may increase Vu)

— For high-variance classifiers, it can reduce
variance




Effect of Boosting

1In the early iterations, boosting is primary
a bias-reducing method

1In later iterations, it appears to be primarily
a variance-reducing method






