Convolutional Neural Networks (CNNs)

CMSC 478 UMBC

Outline

Convolutional Neural Networks

What *is* a convolution?

Multidimensional Convolutions

Typical Convnet Operations

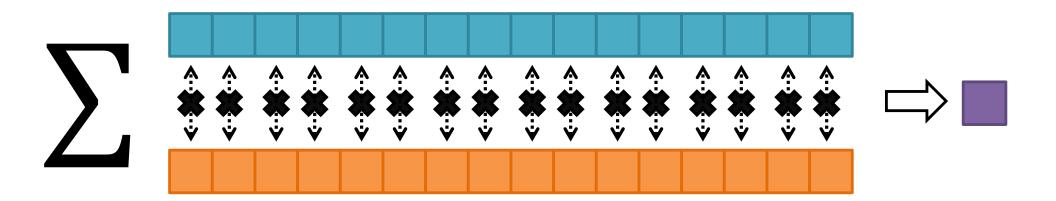
Deep convnets

Recurrent Neural Networks Types of recurrence

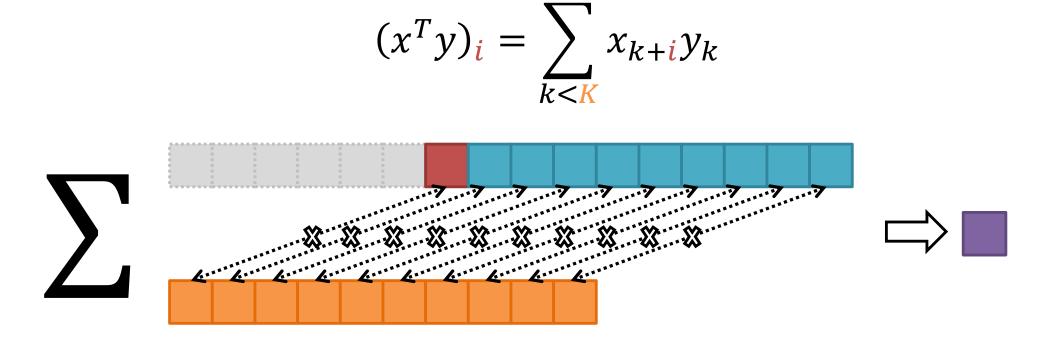
A basic recurrent cell

BPTT: Backpropagation through time

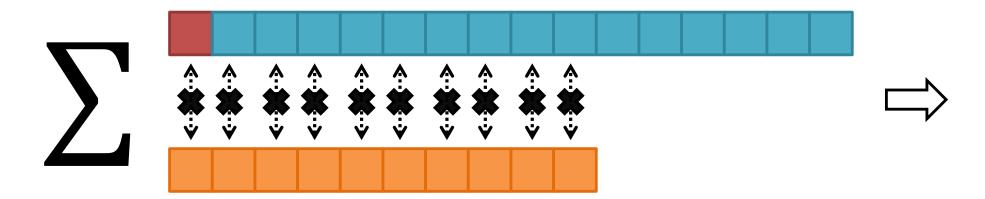
Dot Product



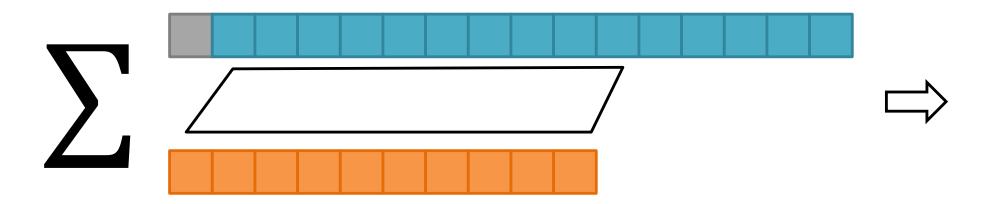
$$x^T y = \sum_k x_k y_k$$



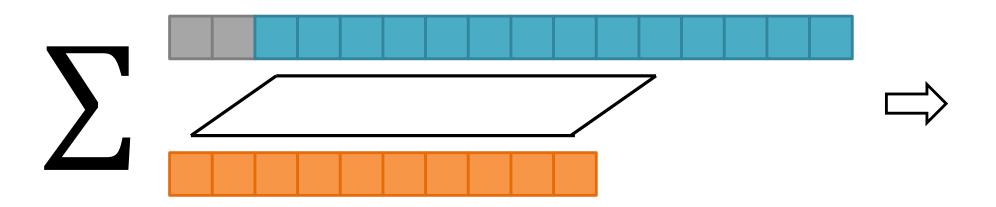
$$(x^T y)_i = \sum_k x_{k+i} y_k$$

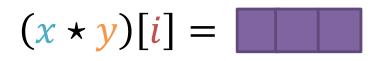


$$(x^T y)_i = \sum_k x_{k+i} y_k$$

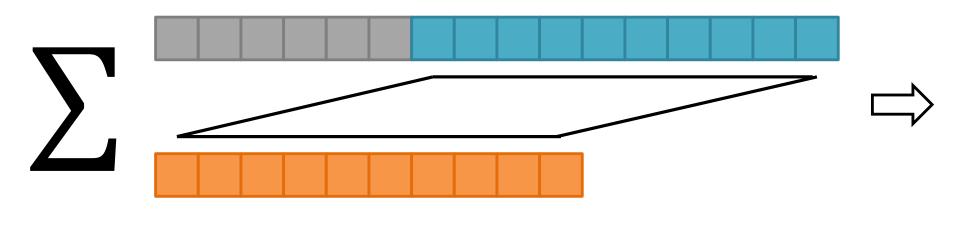


$$(x^T y)_i = \sum_k x_{k+i} y_k$$

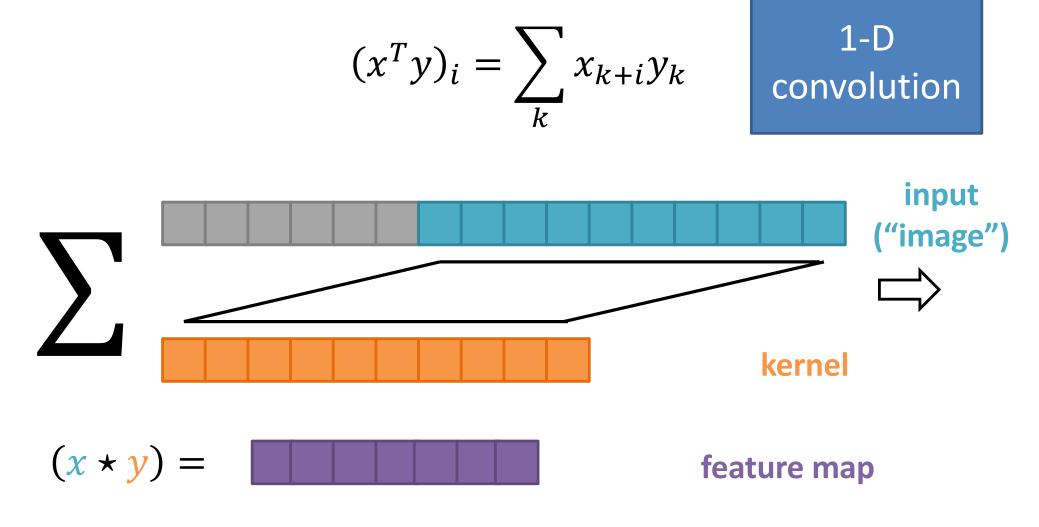




$$(x^T y)_i = \sum_k x_{k+i} y_k$$



 $(x \star y)[i] =$



Outline

Convolutional Neural Networks What *is* a convolution?

> Multidimensional Convolutions

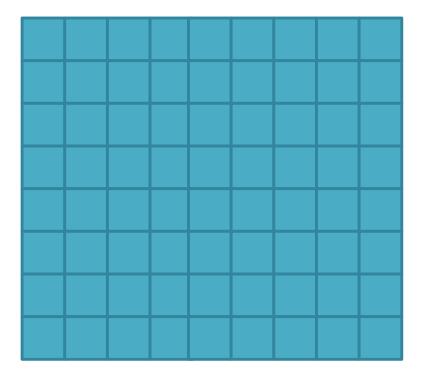
Typical Convnet Operations

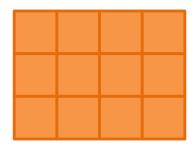
Deep convnets

Recurrent Neural Networks Types of recurrence

A basic recurrent cell

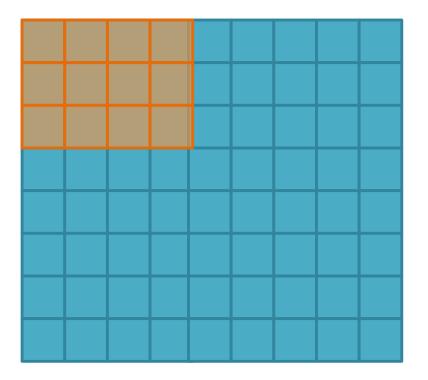
BPTT: Backpropagation through time





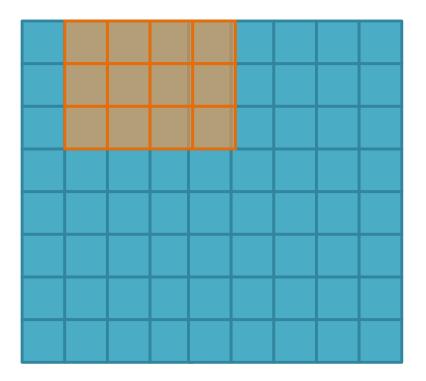
kernel

width: shape of the kernel (often square)



stride(s): how many
spaces to move the kernel

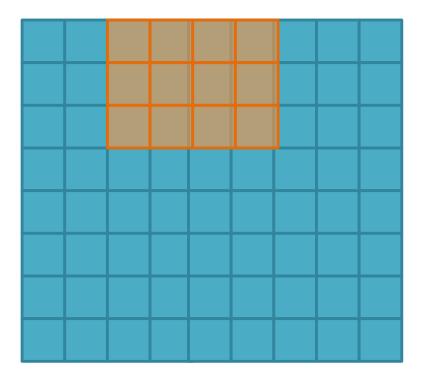
width: shape of the kernel (often square)



stride(s): how many
spaces to move the kernel

stride=1

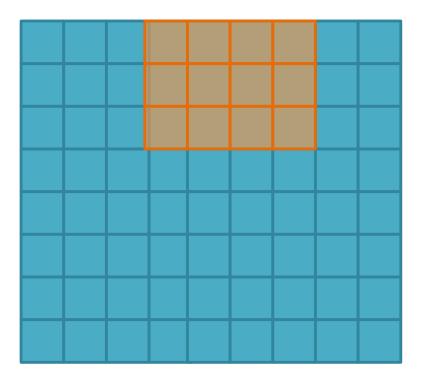
width: shape of the kernel (often square)



stride(s): how many
spaces to move the kernel

stride=1

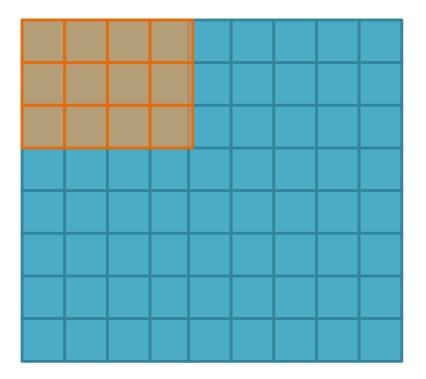
width: shape of the kernel (often square)



stride(s): how many
spaces to move the kernel

stride=1

width: shape of the kernel (often square)



stride(s): how many
spaces to move the kernel

stride=2

width: shape of the kernel (often square)

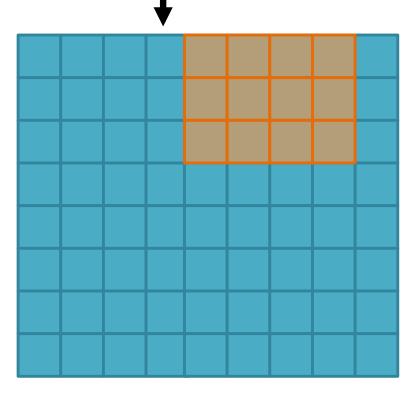
skip starting here

input ("image") stride(s): how many
spaces to move the kernel

stride=2

width: shape of the kernel (often square)

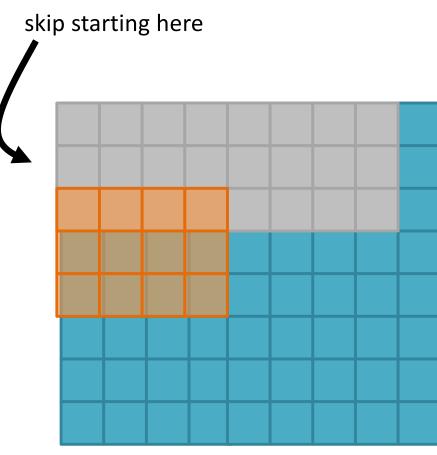
skip starting here



input ("image") stride(s): how many
spaces to move the kernel

stride=2

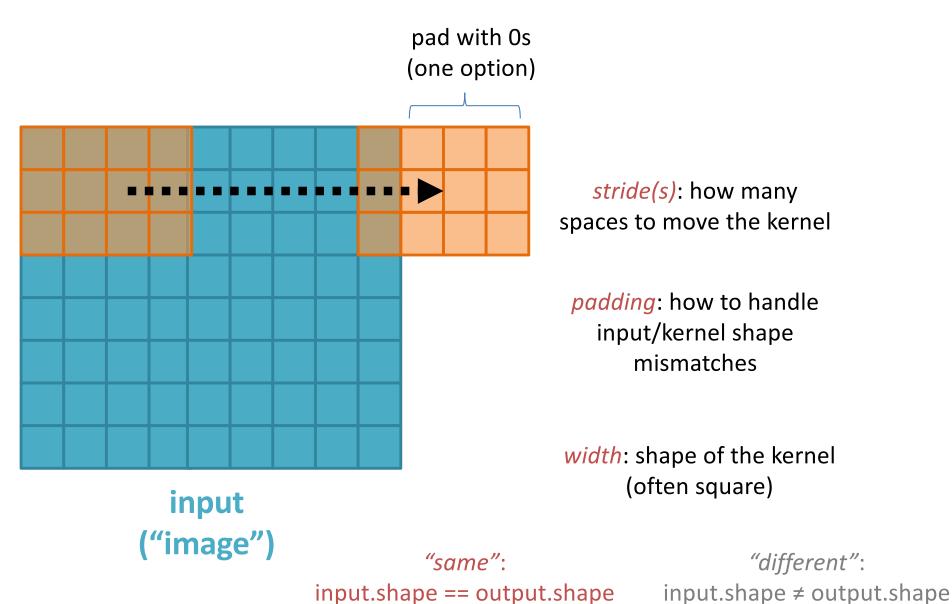
width: shape of the kernel (often square)

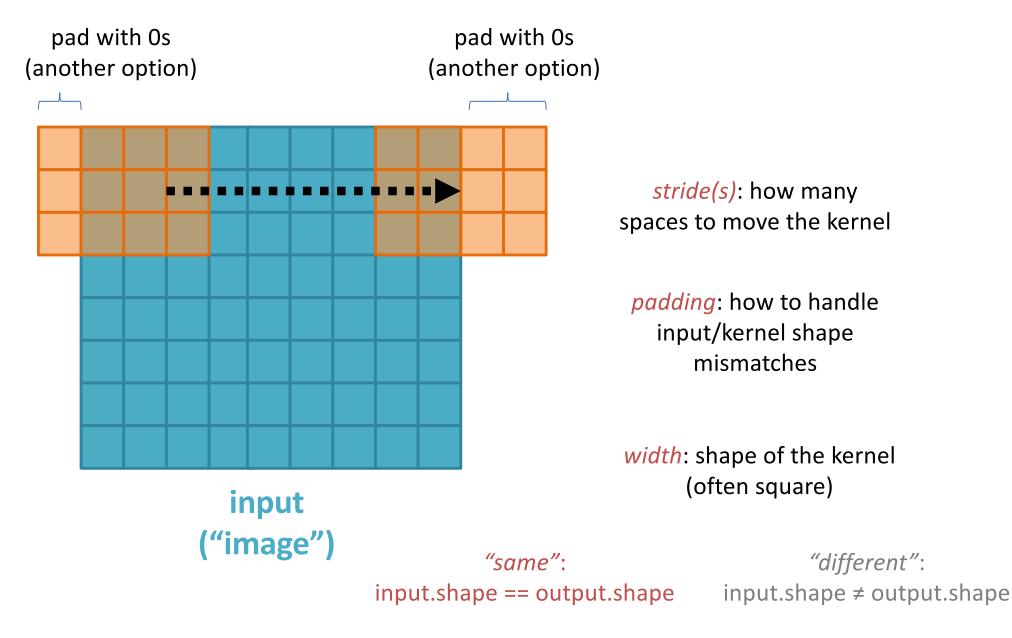


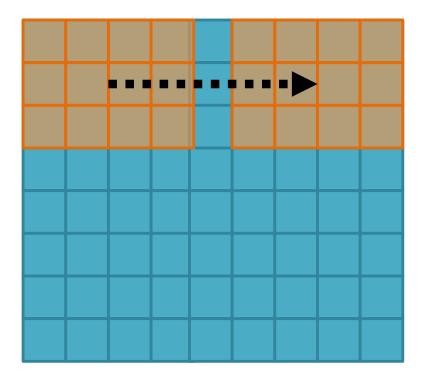
input ("image") *stride(s)*: how many spaces to move the kernel

stride=2

width: shape of the kernel (often square)







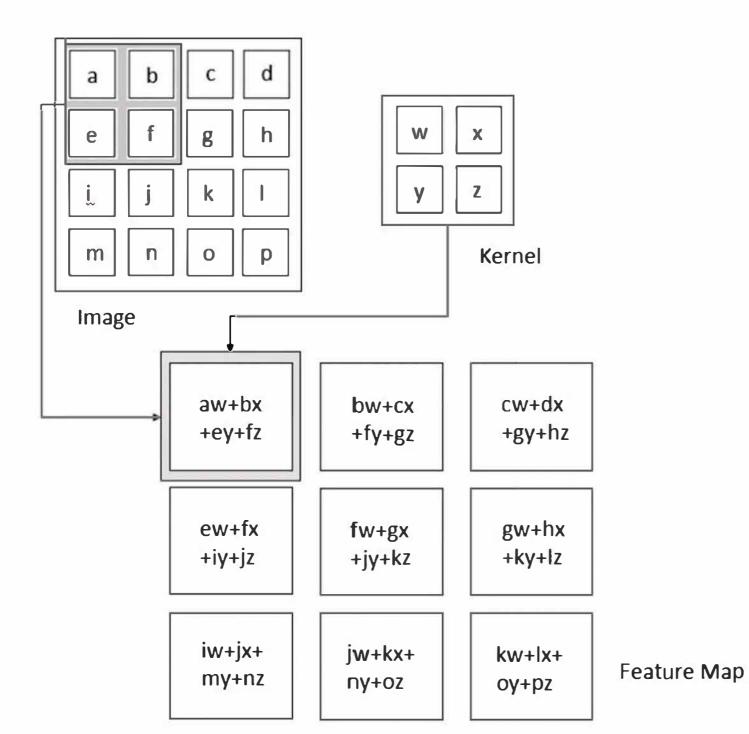
stride(s): how many spaces to move the kernel

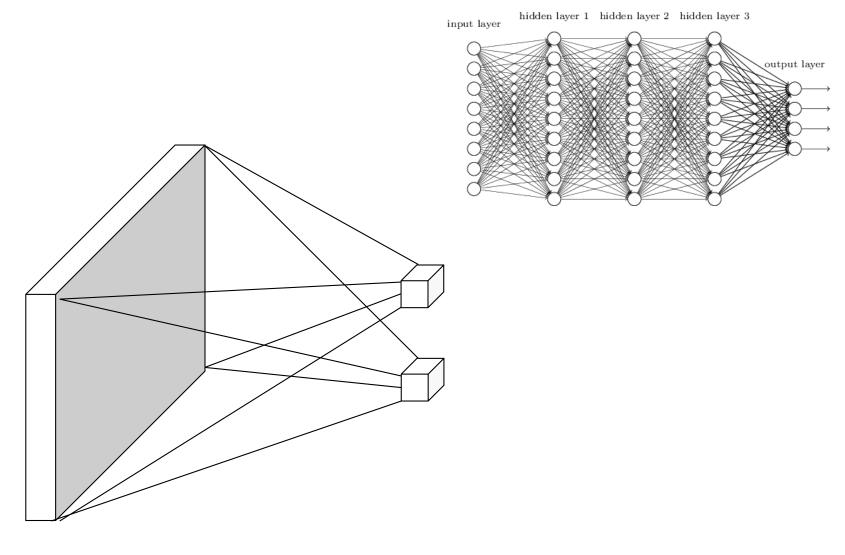
padding: how to handle input/kernel shape mismatches

width: shape of the kernel (often square)

input ("image")

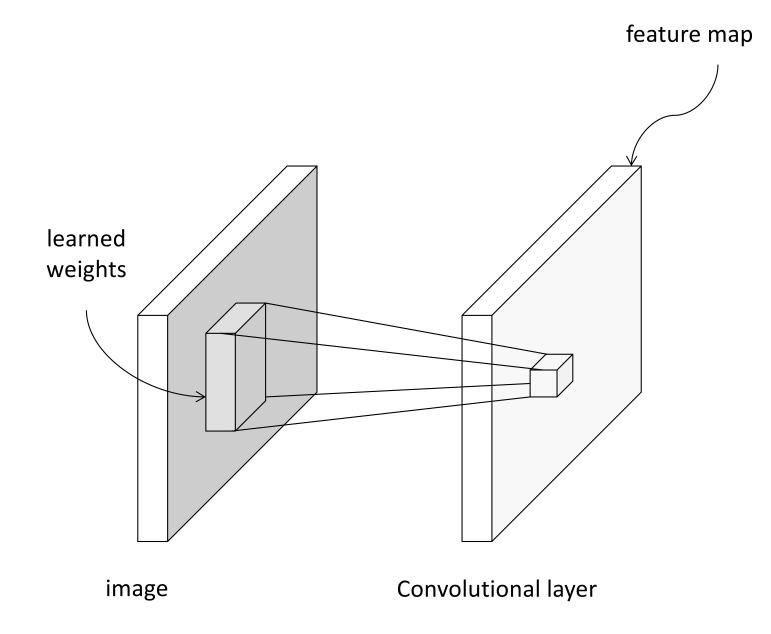
"same": input.shape == output.shape *"different"*: input.shape ≠ output.shape

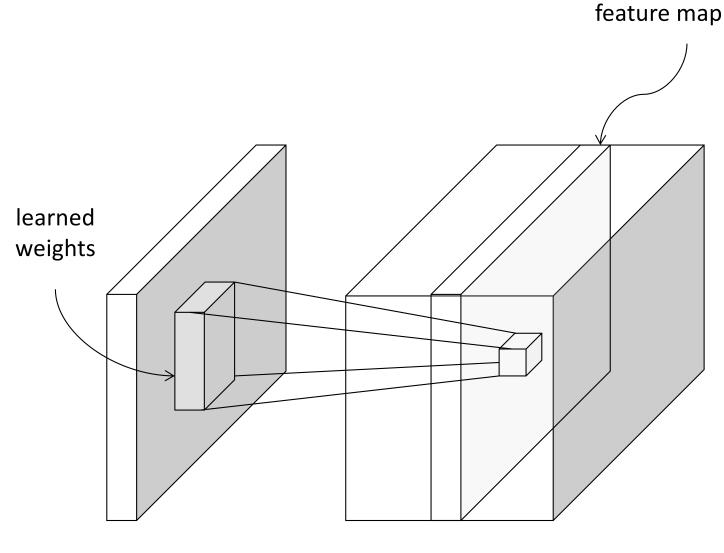




image

Fully connected layer

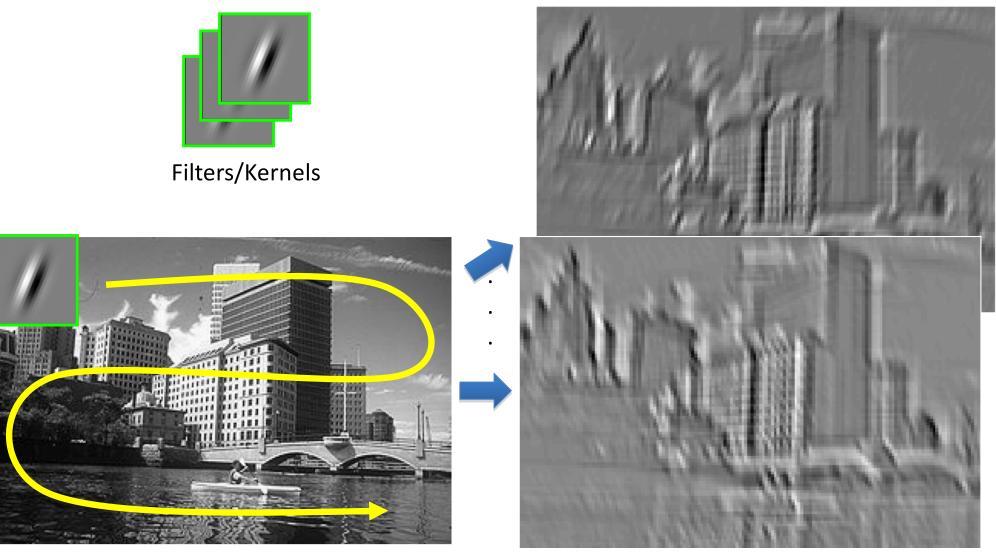




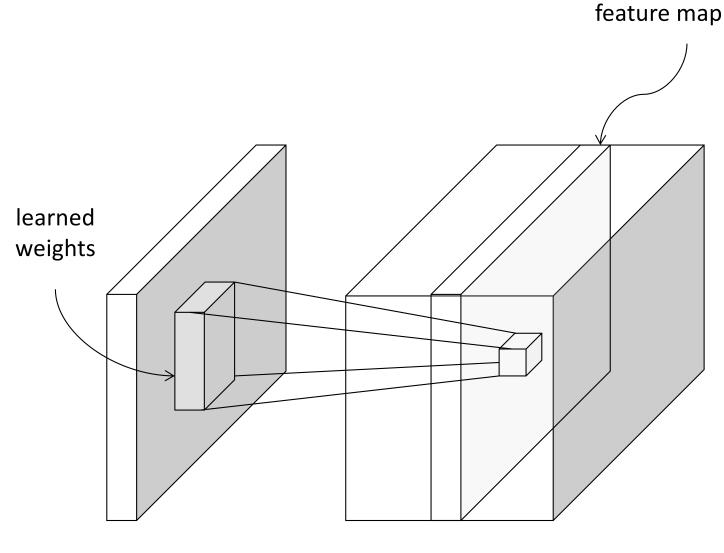
image

Convolutional layer

Convolution as feature extraction

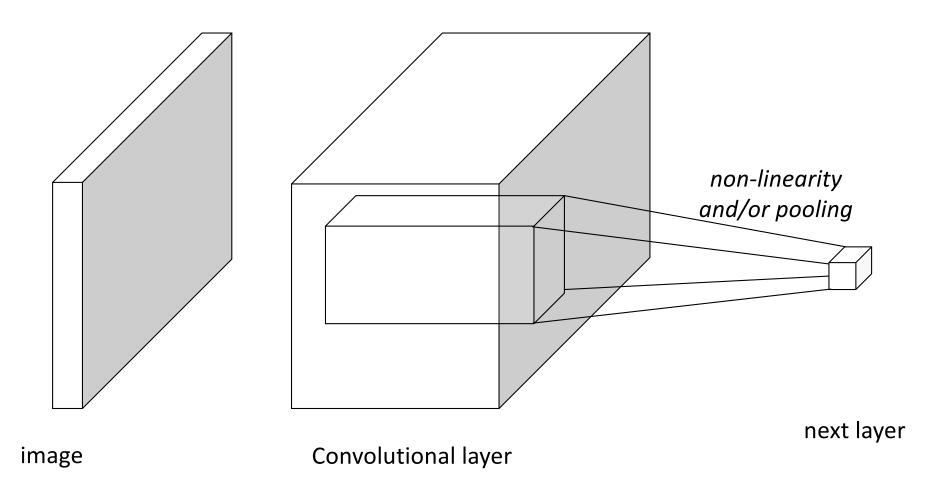


Input Slide credit: Svetlana Lazebnik Feature Map



image

Convolutional layer



Outline

Convolutional Neural Networks What *is* a convolution?

> Multidimensional Convolutions

Typical Convnet Operations

Deep convnets

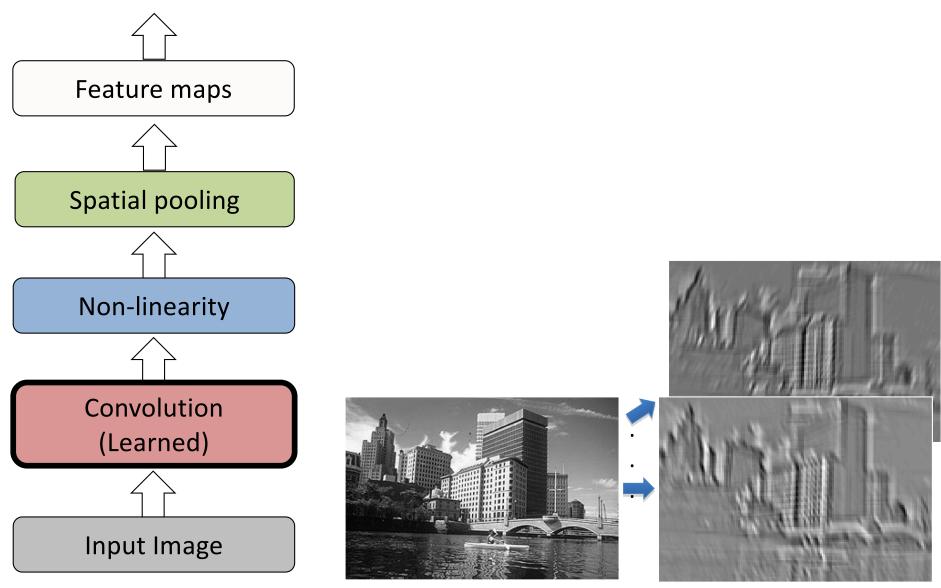
Recurrent Neural Networks Types of recurrence

A basic recurrent cell

BPTT: Backpropagation through time

Solving vanishing gradients problem

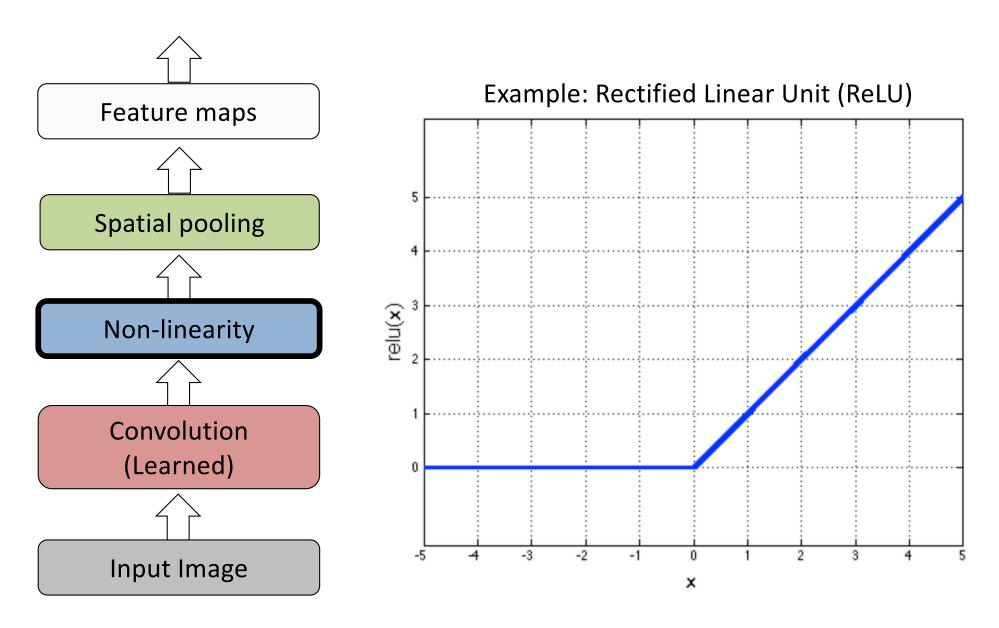
Key operations in a CNN



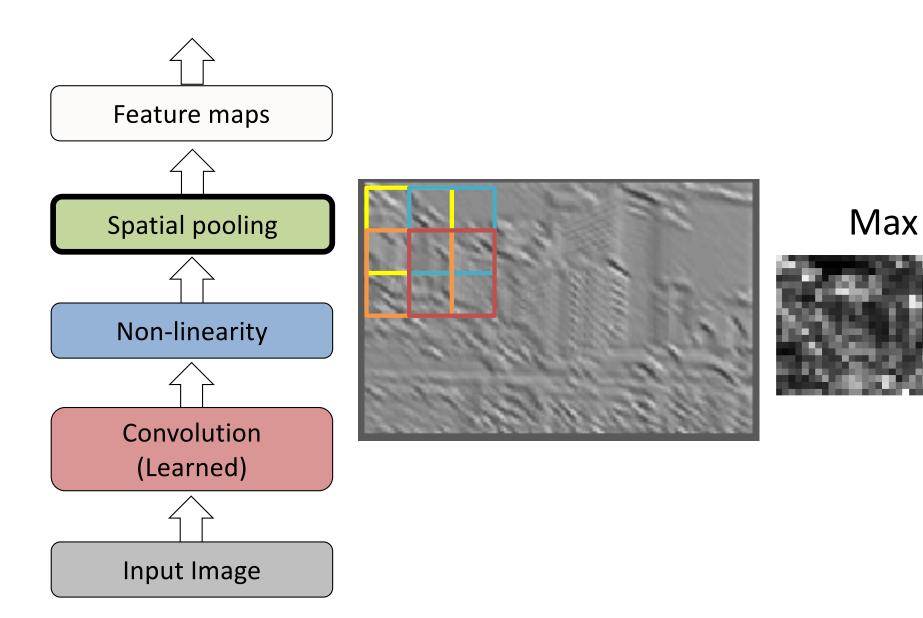
Input

Feature Map

Key operations



Key operations



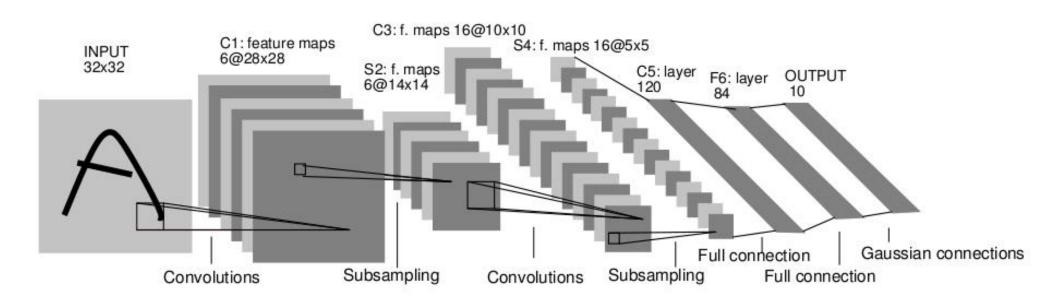
Design principles

Reduce filter sizes (except possibly at the lowest layer), factorize filters aggressively

Use 1x1 convolutions to reduce and expand the number of feature maps judiciously

Use skip connections and/or create multiple paths through the network

LeNet-5



Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based learning applied to document recognition</u>, Proc. IEEE 86(11): 2278–2324, 1998.

ImageNet

IM GENET

~14 million labeled images, 20k classes

Images gathered from Internet

Human labels via Amazon MTurk

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC): 1.2 million training images, 1000 classes

www.image-net.org/challenges/LSVRC/

Outline

Convolutional Neural Networks What *is* a convolution?

> Multidimensional Convolutions

Typical Convnet Operations

Deep convnets

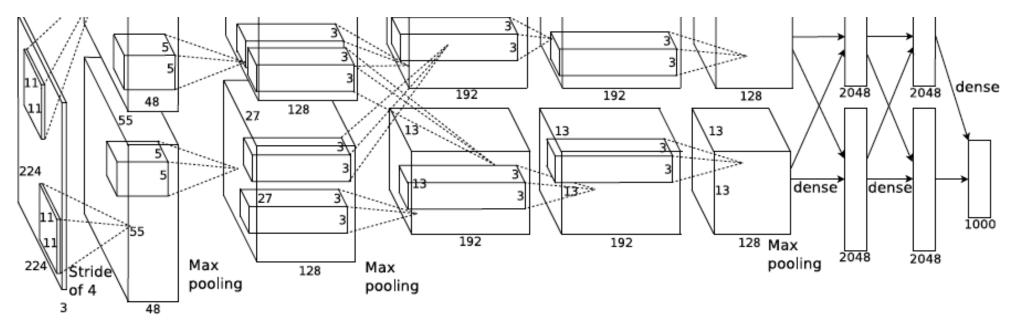
Recurrent Neural Networks Types of recurrence

A basic recurrent cell

BPTT: Backpropagation through time

Solving vanishing gradients problem

Just FYI AlexNet: ILSVRC 2012 winner

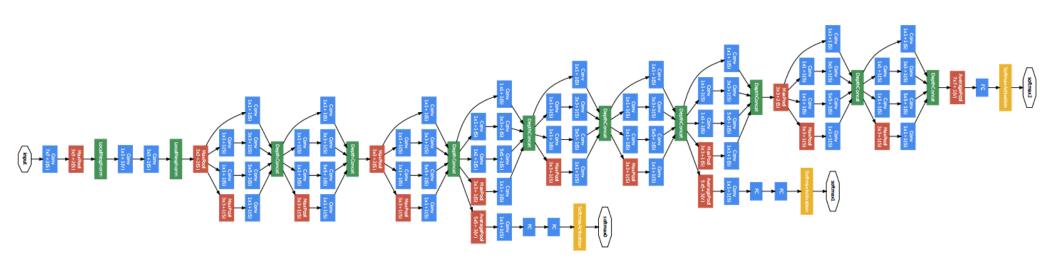


Similar framework to LeNet but:

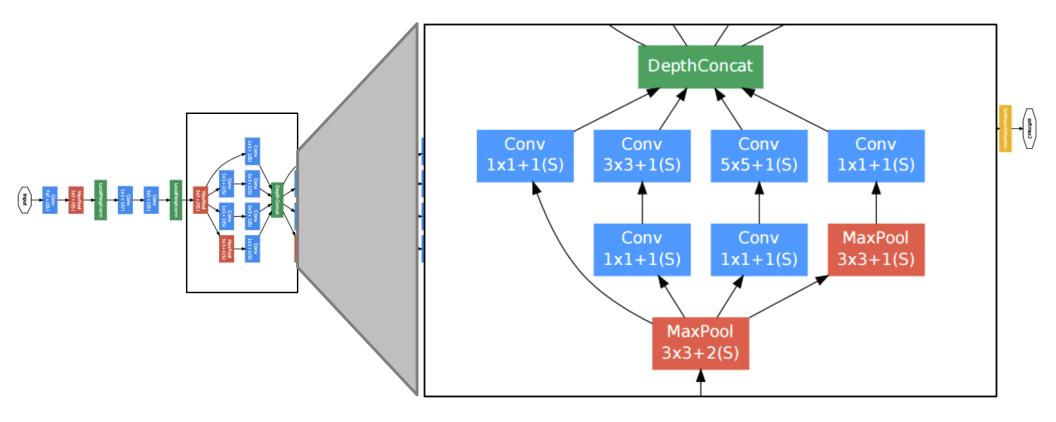
Max pooling, ReLU nonlinearity More data and bigger model (7 hidden layers, 650K units, 60M params) GPU implementation (50x speedup over CPU): Two GPUs for a week Dropout regularization

A. Krizhevsky, I. Sutskever, and G. Hinton, <u>ImageNet Classification with Deep Convolutional</u> <u>Neural Networks</u>, NIPS 2012

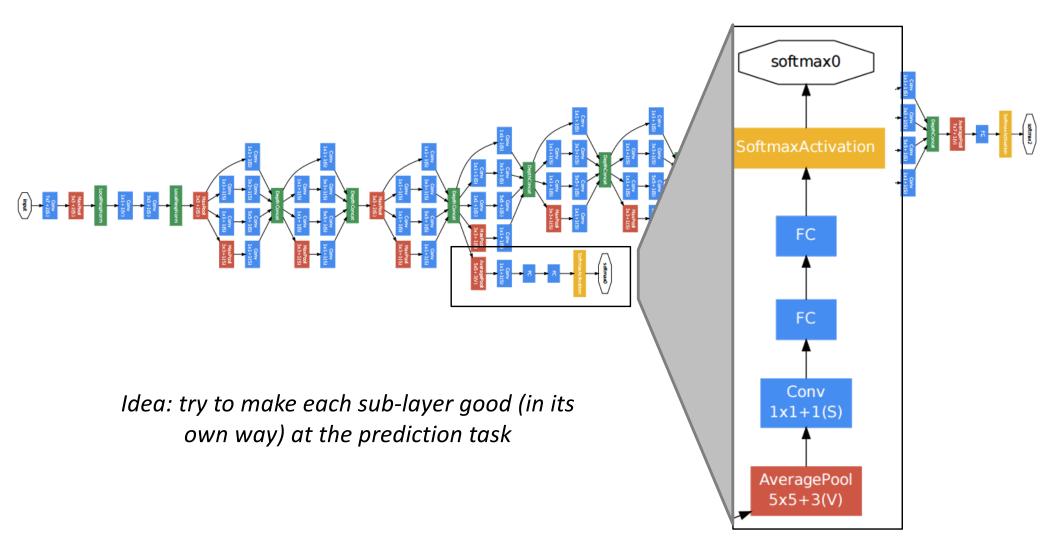
GoogLeNet



GoogLeNet



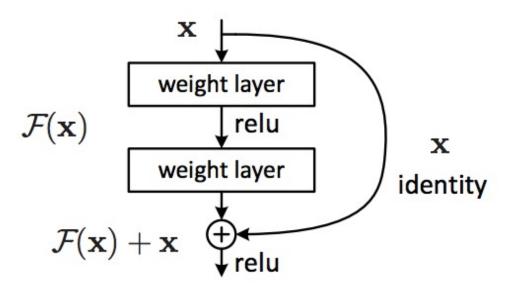
JustoogLeNet: Auxiliary Classifier at Sublevels



GoogLeNet

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				11 2K	360M
max pool	3×3/2	$28 \times 28 \times 192$	0								
inception (3a)		$28 \times 28 \times 256$	2	64	96	128	16	32	32	159K	128M
inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	$14 \times 14 \times 480$	0								
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364K	73M
inception (4b)		$14 \times 14 \times 512$	2	160	112	224	24	64	64	437K	88M
inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		$14 \times 14 \times 832$	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	$7 \times 7 \times 832$	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1 M
softmax		1×1×1000	0								

Make it easy for network layers to represent the identity mapping



Skipping 2+ layers is intentional & needed

He et al. "Deep Residual Learning for Image Recognition" (2016)

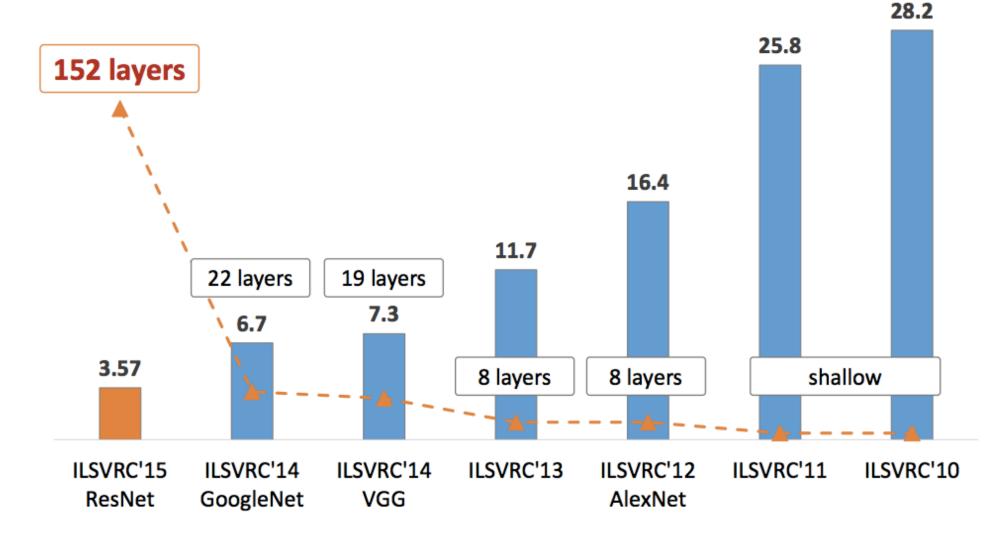
Just FYI Summary: ILSVRC 2012-2015

Team	Year	Place	Error (top-5)	External data	
SuperVision	2012	-	16.4%	no	
SuperVision	2012	1st	15.3%	ImageNet 22k	
Clarifai (7 layers)	2013	-	11.7%	no	
Clarifai	2013	1st	11.2%	ImageNet 22k	
VGG (16 layers)	2014	2nd	7.32%	no	
GoogLeNet (19 layers)	2014	1st	6.67%	no	
ResNet (152 layers)	2015	1st	3.57%		
Human expert*			5.1%		

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

Rapid Progress due to CNNs

Classification: ImageNet Challenge top-5 error



Slide Credit

http://slazebni.cs.illinois.edu/spring17/lec01_cnn_architectures.pdf

http://slazebni.cs.illinois.edu/spring17/lec02_rnn.pdf