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Today: 
• Bayes Classifiers
• Conditional Independence
• Naïve Bayes
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Two Principles for Estimating Parameters 

• Maximum Likelihood Estimate (MLE): choose θ that
maximizes probability of observed data

• Maximum a Posteriori (MAP) estimate: choose θ that
is most probable given prior probability and the data



Maximum Likelihood Estimate 
X=1 X=0 

P(X=1) = θ 
P(X=0) = 1-θ 

(Bernoulli) 



Maximum A Posteriori (MAP) Estimate 
X=1 X=0 



Let’s learn classifiers by learning P(Y|X) 
Consider Y=Wealth,  X=<Gender, HoursWorked> 

Gender HrsWorked P(rich | G,HW) P(poor | G,HW) 

F <40.5 .09 .91 
F >40.5 .21 .79 
M <40.5 .23 .77 
M >40.5 .38 .62 



How many parameters must we estimate? 
Suppose X =<X1,… Xn>  
where Xi and Y are boolean RV�s 

To estimate P(Y| X1, X2, … Xn) 

If we have 30 boolean Xi�s:  P(Y | X1, X2, … X30) 



Bayes Rule 

Which is shorthand for: 

Equivalently: 



Can we reduce params using Bayes Rule? 
Suppose X =<X1,… Xn>  
where Xi and Y are boolean RV�s 

How many parameters to define P(X1,… Xn | Y)? 

How many parameters to define P(Y)? 



Can we reduce params using Bayes Rule? 
Suppose X =<X1,… Xn>  
where Xi and Y are boolean RV�s 

How many parameters to define P(X1,… Xn | Y)? 

How many parameters to define P(Y)? 

P(X|Y=1) ----- 2n - 1 
P(X|Y=0) ----- 2n - 1



Can we reduce params using Bayes Rule? 
Suppose X =<X1,… Xn>  
where Xi and Y are boolean RV�s 



Naïve Bayes 

Naïve Bayes assumes 

i.e., that Xi and Xj are conditionally
independent given Y, for all i≠j 



Conditional Independence
Definition: X is conditionally independent of Y  given Z, if 

the probability distribution governing X is independent 
of the value of Y, given the value of Z 

Which we often write 

E.g.,



Naïve Bayes uses assumption that the Xi are conditionally 
independent, given Y.   E.g., 

Given this assumption, then: 



Naïve Bayes uses assumption that the Xi are conditionally 
independent, given Y.   E.g., 

Given this assumption, then: 

in general: 



Naïve Bayes uses assumption that the Xi are conditionally 
independent, given Y.   E.g., 

Given this assumption, then: 

in general: 
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Naïve Bayes uses assumption that the Xi are conditionally 
independent, given Y.   E.g., 

Given this assumption, then: 

in general: 

How many parameters to describe P(X1…Xn|Y)?  P(Y)? 
• Without conditional indep assumption?
• With conditional indep assumption?
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Naïve Bayes uses assumption that the Xi are conditionally 
independent, given Y 

Given this assumption, then: 

in general: 

How many parameters to describe P(X1…Xn|Y)?  P(Y)? 
• Without conditional indep assumption?
• With conditional indep assumption?



Bayes rule: 

Assuming conditional independence among Xi�s: 

So, to pick most probable Y for Xnew = < X1, …, Xn >  

Naïve Bayes in a Nutshell 



Naïve Bayes Algorithm – discrete Xi  

• Train Naïve Bayes (examples)
for each* value yk

 estimate 
 for each* value xij of each attribute Xi

 estimate 

• Classify (Xnew)

* probabilities must sum to 1, so need estimate only n-1 of these...



Estimating Parameters: Y, Xi discrete-valued  

Maximum likelihood estimates (MLE�s): 

Number of items in 
dataset D for which Y=yk



Example: Live in Sq Hill?  P(S|G,D,M) 
• S=1 iff live in Squirrel Hill
• G=1 iff shop at SH Giant Eagle

• D=1 iff Drive to CMU
• M=1 iff Rachel Maddow fan

What probability parameters must we estimate? 



Example: Live in Sq Hill?  P(S|G,D,M) 
• S=1 iff live in Squirrel Hill
• G=1 iff shop at SH Giant Eagle

• D=1 iff Drive to CMU
• M=1 iff Rachel Maddow fan

What probability parameters must we estimate? 

P(S=1) : 
P(D=1 | S=1) : 
P(D=1 | S=0) : 
P(G=1 | S=1) : 
P(G=1 | S=0) : 
P(M=1 | S=1) : 
P(M=1 | S=0) : 

P(S=0) : 
P(D=0 | S=1) : 
P(D=0 | S=0) : 
P(G=0 | S=1) : 
P(G=0 | S=0) : 
P(M=0 | S=1) : 
P(M=0 | S=0) : 



Example: Live in Sq Hill?  P(S|G,D,B) 
• S=1 iff live in Squirrel Hill
• G=1 iff shop at SH Giant Eagle

• D=1 iff Drive or carpool to CMU
• B=1 iff Birthday is before July 1

What probability parameters must we estimate? 



Example: Live in Sq Hill?  P(S|G,D,E) 
•  S=1 iff live in Squirrel Hill 
•  G=1 iff shop at SH Giant Eagle 

•  D=1 iff Drive or Carpool to CMU 
•  B=1 iff Birthday is before July 1 
 

 
P(S=1) : 
P(D=1 | S=1) : 
P(D=1 | S=0) : 
P(G=1 | S=1) : 
P(G=1 | S=0) : 
P(B=1 | S=1) : 
P(B=1 | S=0) : 

P(S=0) : 
P(D=0 | S=1) : 
P(D=0 | S=0) : 
P(G=0 | S=1) : 
P(G=0 | S=0) : 
P(B=0 | S=1) : 
P(B=0 | S=0) : 



Naïve Bayes: Subtlety #1 

Often the Xi are not really conditionally independent 
 
•  We use Naïve Bayes in many cases anyway, and 

it often works pretty well 
–  often the right classification, even when not the right 

probability (see [Domingos&Pazzani, 1996]) 
 

•  What is effect on estimated P(Y|X)? 
–  Extreme case: what if we add two copies: Xi  = Xk   



Extreme case: what if we add two copies: Xi  = Xk  



Extreme case: what if we add two copies: Xi  = Xk  



Naïve Bayes: Subtlety #2 

If unlucky, our MLE estimate for P(Xi | Y) might be zero.  
(for example, Xi = birthdate.  Xi = Jan_25_1992) 

 
•  Why worry about just one parameter out of many? 

•  What can be done to address this? 



Naïve Bayes: Subtlety #2 

If unlucky, our MLE estimate for P(Xi | Y) might be 
zero.  (e.g., Xi = Birthday_Is_January_30_1992) 

 
•  Why worry about just one parameter out of many? 

•  What can be done to address this? 



Estimating Parameters 
•  Maximum Likelihood Estimate (MLE): choose θ that 

maximizes probability of observed data 

•  Maximum a Posteriori (MAP) estimate: choose θ that 
is most probable given prior probability and the data 



Maximum likelihood estimates: 

Estimating Parameters: Y, Xi discrete-valued  

MAP estimates (Beta, Dirichlet priors): 
 Only difference: 

�imaginary� examples 



Learning to classify text documents 
•  Classify which emails are spam? 
•  Classify which emails promise an attachment? 
•  Classify which web pages are student home pages? 

How shall we represent text documents for Naïve Bayes? 



Baseline: Bag of Words Approach 

aardvark  0 

about  2 

all  2 

Africa  1 

apple  0 

anxious  0 

... 

gas  1 

... 

oil  1 

… 

Zaire  0 



Learning to classify document: P(Y|X) 
the �Bag of Words� model 

•  Y discrete valued.  e.g., Spam or not 
•  X = <X1, X2, … Xn> = document 
 
•  Xi is a random variable describing the word at position i in 

the document 
•  possible values for Xi : any word wk in English 
 
•  Document = bag of words: the vector of counts for all 

wk�s 
–  like #heads, #tails, but we have many more than 2 values 
–  assume word probabilities are position independent  

(i.i.d. rolls of a 50,000-sided die) 



Naïve Bayes Algorithm – discrete Xi  
•  Train Naïve Bayes (examples)   

 for each value yk

  estimate 
  for each value xj of each attribute Xi

   estimate 
 
 
•  Classify (Xnew)   
 

prob that word xj appears 
in position i, given Y=yk 

 * Additional assumption:  word probabilities are position independent 




