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Today:

« Bayes Classifiers

« Conditional Independence
* Nalve Bayes
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Two Principles for Estimating Parameters

« Maximum Likelihood Estimate (MLE): choose 6 that
maximizes probability of observed data D

AN

0 = arg m@ax P(D | 0)

 Maximum a Posteriori (MAP) estimate: choose 6 that
IS most probable given prior probability and the data

§ = argmax P(0|D)

v
arg m@ax _— P(Dpl(z;)P(e)




Maximum Likelihood Estimate

P(X=1)=06
P(X=0)=1-8
(Bernoulli)

e Fach flip yields boolean value for X
X ~ Bernoulli: P(X) = #%(1 —)1=%)

e Data set D of independent, identically distributed (iid) flips pro-
duces o ones, ag zeros

P<D|9) — P(Cl’l,OfOW) — (9@1(1 — 9)&0

03]

PMEE — arg max P(D|) =

7, (l’1+(l’()



Maximum A Posteriori (MAP) Estimate

e Data set D of independent, identically distributed (iid) flips pro-
duces aq ones, o zeros

P(D|9) — P(Ckl,Oé0|9> = 90‘1(1 — 9)040
e Assume prior P(f) = Betal(/, By) = m er—1(1 — )1
e Then

: —1
GMA” = arg max P(D|6) P(6) = it

(a1 + 61 —1)+ (ag+ o — 1)

(like MLE, but hallucinating 3; —1 additional heads, 5y—1 additional tails)



Let’s learn classifiers by learning P(Y|X)
Consider Y=Wealth, X=<Gender, HoursWorked>

gender hours_worked wealth
Female v0:40.5- poor 0253122 NG
rich  0.0245895 |}
v1:40.5+ poor 0.0421768 ||}
rich  0.0116293 ||
Male  v0:40.5- poor 0.331313 |G
rich  0.0971295 |
v1:40.5+ poor 0.134106 |G
rich  0.105933 |
Gender HrsWorked P(rich | G,(HW) P(poor | G,HW)
F <40.5 .09 91
F >40.5 21 79
M <40.5 23 A7
M >40.5 .38 .62




How many parameters must we estimate?

Gender  HrsWorked Pflrich | G,HW) P(poor | G,HW)

<40.5 .09 91

Suppose X =<X,,... X,>
where X, and Y are boolean RV’ s

>40.5 .21 .79
<40.5 .23 a7
>40.5 .38 .62

Z/Z/m|m

To estimate P(Y| X4, X,, ... X))

If we have 30 boolean X.’s: P(Y | X;, X,, ... X3,)



Bayes Rule

P(X|Y)P(Y)

P(Y|X) = 6%

Which is shorthand for:
P(X =z;|Y = y)) P(Y = y;)

(Vi, ))P(Y = yi| X = x;) = P(X = ;)
- )

Equivalently:

>k P(X = 24|Y = yp ) P(Y = y)



Can we reduce params using Bayes Rule?

Suppose X =<X,... X > P(X|Y)P(Y)

' P(Y =
where X. and Y are boolean RV’ s (Y1X) P(X)

How many parameters to define P(X,,... X_|Y)?

How many parameters to define P(Y)?



Can we reduce params using Bayes Rule?

Suppose X =<X,... X > P(X|Y)P(Y)

' P(Y =
where X. and Y are boolean RV’ s V1X) P(X)

How many parameters to define P(X,,... X_|Y)?

P(X[Y=1) ==-m- 20 - 1
P(X|Y=0) ----- 20 - 1

How many parameters to define P(Y)?



Can we reduce params using Bayes Rule?

Suppose X =<X;,... X> @p(y)
' , . PI[X)=
where X, and Y are boolean RV' s P(X)

how many ?WO\MSQV ?(K<"leY> (QVL_’QZ

l/\bu/ My 1[\04 PCY> — L



Nalve Bayes
Nalve Bayes assumes

P(X1...XnlY) = HP(XZ-|Y)

l.e., that X, and Xj are conditionally
independent given Y, for all i=



Conditional Independence

Definition: X is conditionally independent of Y given Z, if
the probability distribution governing X is independent
of the value of Y, given the value of Z

(Vi,5,k)P(X = ;|Y =y, Z = z;) = P(X = 2;|Z = z)

Which we often write

P(X|Y,Z2) = P(X|2)

E.g.,
P(Thunder|Rain, Lightning) = P(Thunder|Lightning)




Naive Bayes uses assumption that the X, are conditionally
independent, given Y. E.g., P(X;|X,.Y) = P(Xq|Y)

Given this assumption, then:
P(X1,X2lY) =



Naive Bayes uses assumption that the X, are conditionally
independent, given Y. E.g., P(X;|X,.Y) = P(Xq|Y)

Given this assumption, then:

P(X1,X2]Y) = P(X1]|X2,Y)P(X3|Y)
= P(X1]Y)P(X2|Y)

in general: P(X1..Xn|lY) = || P(X;|Y)
1
i



Naive Bayes uses assumption that the X, are conditionally
independent, given Y. E.g., P(X{|X,.Y) = P(X;lY)

Given this assumption, then:

P(X1, X2|Y) = P(X1|X2,Y)P(Xp|Y) ChainRule
= P(X1|Y)P(X2|Y)

in general: P(X1..Xn|lY) = || P(X;|Y)
1
i



Naive Bayes uses assumption that the X, are conditionally
independent, given Y. E.g., P(X;|X,.Y) = P(Xq|Y)

Given this assumption, then:

P(X1, X2|Y) = P(X1|X2,Y)P(Xp|Y) ChainRule
= P(X1|Y)P(X2|Y)

in general: P(X;..Xn|Y) =]] P(X;]Y)
i

How many parameters to describe P(X,...X |Y)? P(Y)?
« Without conditional indep assumption?
« With conditional indep assumption?



Naive Bayes uses assumption that the X, are conditionally
iIndependent, given Y

Given this assumption, then:

P(X17X2|Y) — P(X]_|X2,Y)P(X2|Y) CJ/\:(M ‘(\/)f/
= P(X;1|Y)P(X5|Y) Cond- Tudep.

in general: P(X1...X»|Y) =[] P(X;]Y)
0
How many parameters to describe P(X,...X |Y)? P(Y)?

« Without conditional indep assumption? 2(2-1)* |
. With conditional indep assumption? 2.n  + |



Naive Bayes in a Nutshell

Bayes rule:

P(Y = P(Xq...XnlY =
P(Y:yk’Xan): ( yk) ( 1 n| yk)

> P(Y = y)P(X1... Xnl|Y =y )

Assuming conditional independence among X.’ s:
P(Y = yp) I; P(XG|Y = yg)
> P(Y = y;) IL; P(X;|Y = y;)

P(Y = yp|X1...Xp) =

So, to pick most probable Y for xev=<X,, .., X >
Y% — arg max P(Y = yp) [[ P(XTY)Y = yg)
k :
(4



Naive Bayes Algorithm — discrete X

* Train Naive Bayes (examples)
for each” value y,
estimate 7, = P(Y = y.)
for each” value x;; of each attribute X;
estimate 6;;, = P(X; = ;|Y = y,)

« Classify (X"ev)

new
Y% — arg max wkﬂeijk
1

’ probabilities must sum to 1, so need estimate only n-1 of these...



Estimating Parameters: Y, X. discrete-valued

Maximum likelihood estimates (MLE’ s):

#D{Y =y}
| D

#D{X; =z NY =y}

0k = P(X; = xi5]Y = yp,) = #D(Y = g}

/

Number of items in
dataset D for which Y=y,




Example: Live in Sq Hill?| P S|G,D,IVI)/ 50 &

« S=1iff live in Squirrel Hill « D=1 iff Drive to CMU

—

« G=1iff shop at SH Giant Eagle  M=1iff Rachel Maddow fan

What probability parameters must we estimate?



Example: Live in Sq Hill?| P S|G,D,IVI)/ 50 &
« S=1iff live in Squirrel Hill « D=1 iff Drive to CMU

—

« G=1iff shop at SH Giant Eagle  M=1iff Rachel Maddow fan

What probability parameters must we estimate?

P(S=1): P(S=0) :

P(D=1]|S=1): P(D=0 | S=1):
P(D=1|S=0): P(D=0 | S=0):
P(G=1|S=1): P(G=0 | S=1)
P(G=1| S=0): P(G=0 | S=0):
P(M=1 | S=1) : P(M=0 | S=1):
P(M=1 | S=0) : P(M=0 | S=0)




Example: Live in Sq Hill? P(S|G,D,B)
« S=1iff live in Squirrel Hill « D=1 iff Drive or carpool to CMU
« G=1iff shop at SH Giant Eagle + B=1 iff Birthday is before July 1

What probability parameters must we estimate?



Example: Live in Sq Hill? P(S|G,D,E)
« S=1iff live in Squirrel Hill « D=1 iff Drive or Carpool to CMU
« G=1iff shop at SH Giant Eagle « B=1iff Birthday is before July 1

P(S=1): P(S=0):
P(D=1|S=1): P(D=0| S=1):
P(D=1| S=0): P(D=0 | S=0):
P(G=1]S=1): P(G=0]|S=1):
P(G=1|S=0): P(G=0| S=0):
P(B=1]|S=1): P(B=0| S=1):
P(B=1|S=0): P(B=0 | S=0)



Naive Bayes: Subtlety #1
Often the X, are not really conditionally independent

 We use Nalve Bayes in many cases anyway, and
it often works pretty well

— often the right classification, even when not the right
probability (see [Domingos&Pazzani, 1996])

 What is effect on estimated P(Y|X)?

— Extreme case: what if we add two copies: X; = X,



Extreme case: what if we add two copies: X; = X,



Extreme case: what if we add two copies: X; = X,

P(Y=y[x) o P(T=y) \] PL%: W =)
i

o /?Cy\l\f



Nalve Bayes: Subtlety #2

If unlucky, our MLE estimate for P(X; | Y) might be zero.
(for example, X.= birthdate. X.= Jan_25 1992)

 Why worry about just one parameter out of many?

 \What can be done to address this?



Nalve Bayes: Subtlety #2

If unlucky, our MLE estimate for P(X. | Y) might be
zero. (e.g., X.= Birthday_Is_January 30_1992)

 Why worry about just one parameter out of many?

RIDER RN D)

®)
 \What can be done to address this?



Estimating Parameters

« Maximum Likelihood Estimate (MLE): choose 6 that
maximizes probability of observed data D

AN

0 = arg m@ax P(D | 0)

 Maximum a Posteriori (MAP) estimate: choose 6 that
IS most probable given prior probability and the data

§ = argmax P(0|D)

v
darg m@ax = P(DP‘(Q)P(0>




Estimating Parameters: Y, X. discrete-valued

Maximum likelihood estimates:

#D{Y = yi}
| D|

#D{X; =z; \Y =y}
#D{Y = yi}

ar =P =y) =

Oije = P(Xi = z5]Y = y) =

MAP estimates (Beta, Dirichlet priors):

3 ——~ | Only difference:
fp = P(Y = y) = #DWY =y} + (Be— 1) — “imaginary” examples

Dl +>,,(Bm — 1)

A By _ #D{Xz-—ijY—yk}mﬂk—l)
Ok = PG =il =0 = Ty Dy — T 5 (B — D



Learning to classify text documents

» Classify which emails are spam?
« Classify which emails promise an attachment?

« Classify which web pages are student home pages?

How shall we represent text documents for Naive Bayes?



Baseline: Bag of Words Approach

P All About The Company

Global Activities aal”dVaI'k

0
Corporate Structure
TOTAL's Story about 2
Upstream Strategy
Downstream Strategy
Chemicals Strategy all 2
TOTAL Foundation
Homepage 1

A 4

Africa

all about the apple
company

anxious
Our energy exploration, production, and distribution
operations span the globe, with activities in more than 100
countries.
gas |
At TOTAL, we draw our greatest strength from our

fast-growing o1l and gas reserves. Our strategic emphasis
on natural gas prowvides a strong position in a rapidly
expanding market.

N 4 o oil 1
Our expanding refining and marketing operations in Asia
and the Mediterranean Rim complement already solid
posttions in Europe, Aftica, and the U5

Qur growing specialty chemicals sector adds balance and Zaire 0
profit to the core energy business.




Learning to classify document: P(Y|X)
the “Bag of Words”™ model

Y discrete valued. e.g., Spam or not
X =<X4, X,, ... X,> = document

X Is a random variable describing the word at position i in
the document

possible values for X, : any word w, in English

Document = bag of words: the vector of counts for all
W, S
— like #heads, #tails, but we have many more than 2 values

— assume word probabilities are position independent
(i.i.d. rolls of a 50,000-sided die)



Naive Bayes Algorithm — discrete X

« Train Naive Bayes (examples)
for each value y,
estimate 7 = P(Y = y)
for each value x; of each attribute X;
estimate 6, ;% E/P(X,; = z,;|Y = yx)
prob that word x; appears

in position i, given Y=y,
« Classify (X"")
Y —argmax P(Y = yi) [ [ P(XPNY = )
k ;
(4
Y —argmax  m ] 95k
)

Yk

" Additional assumption: word probabilities are position independent
Oijk — ijk for all ’l:, m





