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Linear classifiers (with offset)
• A linear classifier with parameters            
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Support vector machine

• We get a max-margin decision boundary by solving a 
quadratic programming problem

• The solution is unique and sparse (support vectors)
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Support vector machine
• Relaxed quadratic optimization problem

The value of C is an additional 
parameter we have to set



Beyond linear classifiers...
• Many problems are not solved well by a linear classifier 

even if we allow misclassified examples (SVM with slack)

• E.g., data from experiments typically involve “clusters” 
of different types of examples 



Non-linear feature mappings
• The easiest way to make the classifier more powerful is 

to add non-linear coordinates to the feature vectors

• The classifier is still linear in the parameters, not inputs
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Non-linear feature mappings
• By expanding the feature coordinates, we still have a 

linear classifier in the new feature coordinates but a 
non-linear classifier in the original coordinates
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Learning non-linear classifiers
• We can apply the same SVM formulation, just replacing 

the input examples with (higher dimensional) feature 
vectors

• Note that the cost of solving this quadratic 
programming problem increases with the dimension of 
the feature vectors (we will avoid this issues by solving 
the dual instead)



• Many (low dimensional) problems are not solved well by 
a linear classifier even with slack

• By mapping examples to feature vectors, and maximizing 
a linear margin in the feature space, we obtain non-linear 
margin curves in the original space
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Problems to resolve
By using non-linear feature mappings we get more 
powerful sets of classifiers

• Computational efficiency?
-  the cost of using higher dimensional feature vectors (seems 

to) increase with the dimension

• Model selection?
- how do we choose among different feature mappings?

linear features 2nd order features 3rd order features



Non-linear perceptron, kernels
• Non-linear feature mappings can be dealt with more 

efficiently through their inner products or “kernels”

• We will begin by turning the perceptron classifier with 
non-linear features into a “kernel perceptron”

• For simplicity, we drop the offset parameter

(applied in a sequence or repeatedly 
over a fixed training set)



On perceptron updates
• Each update adds               to the parameter vector
• Repeated updates on the same example simply result in 

adding the same term multiple times 

• We can therefore write the current perceptron 
solution as a function of how many times we performed 
an update on each training example 



Kernel perceptron
• By switching to the “count” representation, we can

write the perceptron algorithm entirely in terms of
inner products between the feature vectors
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Feature mappings and kernels
• In the kernel perceptron algorithm, the feature vectors 

appear only as inner products

• Instead of explicitly constructing feature vectors, we can 
try to explicate their inner product or kernel

•                                  is a kernel function if there exists 
a feature mapping such that !



Feature mappings and kernels
• In the kernel perceptron algorithm, the feature vectors 

appear only as inner products

• Instead of explicitly constructing feature vectors, we can 
try to explicate their inner product or kernel

•                                  is a kernel function if there exists 
a feature mapping such that !

• Examples of polynomial kernels



Radial basis kernel
• The feature “vectors” corresponding to kernels may 

also be infinite dimensional (functions)

• This is the case, e.g., for the radial basis kernel

• Any distinct set of training points, regardless of their 
labels, are separable using this kernel function!



Kernel perceptron cont’d
• We can now apply the kernel perceptron algorithm 

without ever explicating the feature vectors



Kernel perceptron: example
• With a radial basis kernel

only four
 mistakes!



Kernel SVM
• We can also turn SVM into its dual (kernel) form and 

implicitly find the max-margin linear separator in the 
feature space, e.g., corresponding to the radial basis 
kernel



Extra Slides



• We can construct valid kernels from simple
components

• For any function  , if K1 is a kernel, then so 
is !
!

• The set of kernel functions is closed under addition and
multiplication: if K1 and K2 are kernels, then so are

• The composition rules are also helpful in verifying that a
kernel is valid (i.e., corresponds to an inner product of
some feature vectors)

Composition rules for kernels

1)

2)

3)
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Radial basis kernel
• The feature “vectors” corresponding to kernels may 

also be infinite dimensional (functions)

• This is the case, e.g., for the radial basis kernel

• Any distinct set of training points, regardless of their 
labels, are separable using this kernel function!

• We can use the composition rules to show that this is 
indeed a valid kernel

! Infinite Taylor series expansion 



Kernels
• By writing the algorithm in a “kernel” form, we can try 

to work with the kernel (inner product) directly rather 
than explicating the high dimensional feature vectors  

• All we need to ensure is that the kernel is “valid”, i.e., 
there exists some underlying feature representation

(e.g.)



Valid kernels
• A kernel function is valid (is a kernel) if there exists 

some feature mapping such that 

• Equivalently, a kernel is valid if it is symmetric and for all 
training sets, the Gram matrix !
!
!
!
!
!
!
is positive semi-definite


