CMSC 478

Machine Learning

KMA Solaiman
ksolaima@umbc.edu

(originally prepared by Tommi Jaakkola, MIT CSAIL)

Linear classifiers (with offset)

* A linear classifier with parameters (Q’ 90)

f(z;0,00) = sign(6-z+6,)
B +1, if0-x+6, >0
B —1, if0-2+0, <O

+

\ X
decision

boundary

Support vector machine

dlsta(uée to the boun j,
=
H*T . %)"Z ---- - ||Q*H geometrigc margin
e e @ |
Yg =
e & 7 lle|
1

minimize §H 0]|* subject to

To find 6%, 0 :

* We get a max-margin decision boundary by solving a
quadratic programming problem

* The solution is unique and sparse (support vectors)

Support vector machine

* Relaxed quadratic optimization problem

1 T
minimize §HQH2 + C;fi subject to

y; (0 - x; +)
&

[V

1—&;, izl,...,n
0, 2=1,...,n

A%

The value of C is an additional
o parameter we have to set

Beyond linear classifiers...

* Many problems are not solved well by a linear classifier
even if we allow misclassified examples (SVM with slack)

* E.g., data from experiments typically involve “clusters”
of different types of examples

Non-linear feature mappings

* The easiest way to make the classifier more powerful is
to add non-linear coordinates to the feature vectors

* The classifier is still linear in the parameters, not inputs

L1
_ - :EQ
r=|"" - o(z)=| o
L2 \/§$1$2
f(z;0,00) = sign(8 - 2 + o) LT
linear classifier f(g, Q, 9()) — Sign (Q ' @(g) + 90)

non-linear classifier

Non-linear feature mappings

* The easiest way to make the classifier more powerful is
to add non-linear coordinates to the feature vectors

* The classifier is still linear in the parameters, not inputs

L1
_ - :EQ
r=|"" - o(z)=| o
L2 \/§$1$2
fa;0,60) = sign(8 - z + 6o) T
linear classifier f(g, Q, 9()) — Sign (Q ' @(g) + 90)
0-x+0=0

non-linear classifier

Non-linear feature mappings

* The easiest way to make the classifier more powerful is
to add non-linear coordinates to the feature vectors

* The classifier is still linear in the parameters, not inputs

L1
_ - :EQ
r=|"" - o(z)=| o
L2 \/§$1$2
fa;0,60) = sign(8 - z + 6o) T
linear classifier f(g, Q, 9()) — Sign (Q ' @(g) + 90)
0-x+0=0

non-linear classifier

91331 -+ (921’2 -+ 90 = ()

linear decision
boundary

Non-linear feature mappings

* The easiest way to make the classifier more powerful is
to add non-linear coordinates to the feature vectors

* The classifier is still linear in the parameters, not inputs

L1
_ - :EQ
r=|"" - o(z)=| o
L2 \/§$1$2
f(z;0,00) = sign(8 - 2 + o) LT
linear classifier f(g, Q, 9()) — Sign (Q ' @(g) + 90)

non-linear classifier

0-o(x)+0,=0

Non-linear feature mappings

* The easiest way to make the classifier more powerful is
to add non-linear coordinates to the feature vectors

* The classifier is still linear in the parameters, not inputs

T = — 0(z) = 7

f(z;0,00) = sign (0 - z + 6o) . T
linear classifier f(@, Q, 9()) — Sign (Q ' @(@) -+ 90)

non-linear classifier

0-o(x)+ 0y =0
D11 + Ooxo + 0322 + 04/ 221209 + 0522 + 0y = 0

non-linear decision boundary

Non-linear feature mappings

* By expanding the feature coordinates, we still have a
linear classifier in the new feature coordinates but a
non-linear classifier in the original coordinates

b D9 dim(¢) > 2 L9 dim(z) = 2

maximize
margin inXhe +
featu rezsi% 9 ;

Mobile User

solaiman
Pencil

solaiman
Pencil

Learning non-linear classifiers

®* We can apply the same SVM formulation, just replacing
the input examples with (higher dimensional) feature
vectors

1 —
minimize §HQH2 + C ;fz subject to
fz' > O, izl,...,n

* Note that the cost of solving this quadratic
programming problem increases with the dimension of
the feature vectors (we will avoid this issues by solving
the dual instead)

Non-linear classifiers

* Many (low dimensional) problems are not solved well by
a linear classifier even with slack

* By mapping examples to feature vectors, and maximizing
a linear margin in the feature space, we obtain non-linear
margin curves in the original space

linear features 2nd order features

Non-linear classifiers

* Many (low dimensional) problems are not solved well by
a linear classifier even with slack

* By mapping examples to feature vectors, and maximizing
a linear margin in the feature space, we obtain non-linear

margin curves in the original space é(z) + 0o = —1

o(z) +6p=0
[

j r)+ 6y =1

linear features 2nd order features

Problems to resolve

By using non-linear feature mappings we get more
powerful sets of classifiers

* Computational efficiency?

- the cost of using higher dimensional feature vectors (seems
to) increase with the dimension

* Model selection?

- how do we choose among different feature mappings!?

linear features 2nd order features 3rd order features

Non-linear perceptron, kernels

* Non-linear feature mappings can be dealt with more
efficiently through their inner products or “kernels”

* We will begin by turning the perceptron classifier with
non-linear features into a “kernel perceptron”

* For simplicity, we drop the offset parameter
f(z;0) = sign (@ - ¢(z))

Initialize: 6 = 0

R (applied in a sequence or repeatedly
For ¢ = L, 2’ T over a fixed training set)

if y,(0 - &(z,)) < 0 (mistake)
0 — 0+ yio(z,)

On perceptron updates

* Each update adds 1;¢(x;) to the parameter vector

* Repeated updates on the same example simply result in
adding the same term multiple times

®* We can therefore write the current perceptron
solution as a function of how many times we performed
an update on each training example

0 = z Q; yz@(zz)
i=1

a; € {0,1,...}, Zaz —= 7 of mistakes
i=1

Kernel perceptron

* By switching to the “count” representation, we can
write the perceptron algorithm entirely in terms of
inner products between the feature vectors

f(z;0) = sign (0 - ¢(x)) = sign Z&zyz o(z;) - &(2)])

Initialize: o; =0,2=1,...,n
Repeat until convergence:

Kernel perceptron

* By switching to the “count” representation, we can
write the perceptron algorithm entirely in terms of
inner products between the feature vectors

F(a;0) = sign(@ - 0(x) = sign(

Initialize: a; =0,2=1,....n
Repeat until convergence:

Feature mappings and kernels

® In the kernel perceptron algorithm, the feature vectors
appear only as inner products

* Instead of explicitly constructing feature vectors, we can
try to explicate their inner product or kernel

e K : R x R* — R is a kernel function if there exists
a feature mapping such that

K(z,2') = ¢(z) - o(2')

Feature mappings and kernels

® In the kernel perceptron algorithm, the feature vectors
appear only as inner products

* Instead of explicitly constructing feature vectors, we can
try to explicate their inner product or kernel

e K : R x R* — R is a kernel function if there exists
a feature mapping such that

K(z,2') = o(z) - (2)

* Examples of polynomial kernels

K(z,z') = (z-2')

K(z,2") = (z-2')+ (z-2')°

K(z,2') = (z-2')+ (z-2")° + (z-2')°
K(z,2') = (1+z-2')", p=1,2,.

Radial basis kernel

® The feature “vectors” corresponding to kernels may
also be infinite dimensional (functions)

* This is the case, e.g,, for the radial basis kernel

K(z,z')=exp(—Bllz —2'||*), >0

* Any distinct set of training points, regardless of their
labels, are separable using this kernel function!

Kernel perceptron cont'd

®* We can now apply the kernel perceptron algorithm
without ever explicating the feature vectors

flz; o) = Sign(Z%‘%K(%»@))

1=1

Initialize: o; =0,2=1,....,n
Repeat until convergence:

fort=1,.... n
if v (Yo, iy K (2;,2,)) <0 (mistake)

Oét<—04t+1

Kernel perceptron: example

* With a radial basis I<erne|f

f(z;0) =sign(Y oK (z;,z))

1=1
5 — , T, .
) : E oy K (i, 2) = 0
o0 ° 'I::l,"'
3 P))
| only four
1l) mistakes!
0%,
0 Of
% o
-1}
) 1
-6 4 6 8

Kernel SVM

®* We can also turn SVM into its dual (kernel) form and
implicitly find the max-margin linear separator in the
feature space, e.g., corresponding to the radial basis

kernel r
f(z; o) = sign(Z oy K (2, x) + 6o)

1=1

Extra Slides

Composition rules for kernels

®* We can construct valid kernels from simple
components

* For any function f : R* — R, if K, is a kernel, then so

) K(z,2') = f(z)Ki(z,2") f(z')

* The set of kernel functions is closed under addition and
multiplication: if K, and K, are kernels, then so are

2) K(z,2') = Ki(z,2) + Ka(z,2)
3) K(z,2') = Ki(z,2")Ky(z, 2')
®* The composition rules are also helpful in verifying that a

kernel is valid (i.e., corresponds to an inner product of
some feature vectors)

Radial basis kernel

® The feature “vectors” corresponding to kernels may
also be infinite dimensional (functions)

* This is the case, e.g,, for the radial basis kernel

K(z,z')=exp(—Bllz —2'||*), >0

* Any distinct set of training points, regardless of their
labels, are separable using this kernel function!

Radial basis kernel

® The feature “vectors” corresponding to kernels may
also be infinite dimensional (functions)

* This is the case, e.g,, for the radial basis kernel

K(z,2') =exp (— Bllz —2'||*), >0

* Any distinct set of training points, regardless of their
labels, are separable using this kernel function!

®* We can use the composition rules to show that this is
indeed a valid kernel

exp{—f|lz — 2'||’} = exp{—fz -z +20x

r+ 20z -2 — Bz’ -2’}

Radial basis kernel

® The feature “vectors” corresponding to kernels may
also be infinite dimensional (functions)

* This is the case, e.g,, for the radial basis kernel

K(z,2')=exp(—Bllz —2'||*), 8>0

—] —

* Any distinct set of training points, regardless of their
labels, are separable using this kernel function!

®* We can use the composition rules to show that this is
indeed a valid kernel

exp{—f|lz — 2’|’} = exp{—fz-x+20x- 2
f(z) f(z')

e N — e N ———

= exp{—pz -z} exp{20x - x'} exp{—0x" - 2’}

Radial basis kernel

® The feature “vectors” corresponding to kernels may
also be infinite dimensional (functions)

* This is the case, e.g,, for the radial basis kernel

K(z,z')=exp(—Bllz —2'||*), 8>0

—) —

* Any distinct set of training points, regardless of their
labels, are separable using this kernel function!

®* We can use the composition rules to show that this is
indeed a valid kernel

exp{ Bz — «'|*}

exp{—[0x -z + 20x -

f(z) f(z")

e N—
= exp{—pfx -z} exp{20z - x'} exp{—0x" - 2’}
= fl@)(1+28z-2")+...) f(z))

© _k 2 3
z z z \ J
eZ:E T =ltz+ o+ 4. |
—0 k! 2t 3 € Infinite Taylor series expansion

Kernels

* By writing the algorithm in a “kernel” form, we can try
to work with the kernel (inner product) directly rather
than explicating the high dimensional feature vectors

d(z) - 9(2')

K(z,2')

— O I

exp(—llz — 2'[?) (eg)

* All we need to ensure is that the kernel is “valid”, i.e.,
there exists some underlying feature representation

Valid kernels

* A kernel function is valid (is a kernel) if there exists
some feature mapping such that

K(z,z') = o(z)- o(z')

* Equivalently, a kernel is valid if it is symmetric and for all
training sets, the Gram matrix

- K(zy,2y) - K(zy,z2,)

K(l.'mzl) K(gjn?zn)

is positive semi-definite

