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Today’s topics

* Perceptron, convergence
- the prediction game
- mistakes, margin, and generalization

* Maximum margin classifier -- support vector machine
- estimation, properties

- allowing misclassified points



Recall: linear classifiers

* A linear classifier (through origin) with parameters ¢
divides the space into positive and negative halves

f(z;0) = Sign(Q-g) = sign(@lxl Oda:d)
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The perceptron algorithm

* A sequence of examples and labels
(ztayt)a t = ]-7 27 v

* The perceptron algorithm applied to the sequence
Initialize: 8 =0
Fort=1,2,...
if y4(0 - ;) < 0 (mistake)

0 — 0+ yxy

* We would like to bound the number of mistakes that the
algorithm makes



Mistakes and margin
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Margin in SVM
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Maximum margin classifier

yi (0" - z;
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Maximum margin classifier
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Support vector machine

yi(0" - z;) > A
+ o e T Vg
* —" . -
Q + + geometrii margin
’7/ —
_ T le
1

minimize 5 |

To find 0" :

yi(Q ‘ lfz) > 1

0]|* subject to

cr=1,...,n

* This is a quadratic programming problem (quadratic

objective, linear constraints)

* The solution is unique, typically obtained in the dual



Support vector machine

= geometric margin
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Support vector machine

support vector
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The solution is Y1 (Q 1) = ST~ |
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Is sparse solution good!?

support vector
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®* We can simulate test performance by evaluating Leave-
One-Out Cross-Validation error

LOOCY(g+) < 7-0f support vectors

T
Intuitively:
if you remove the support vector from the training set, and you receive the
support vector as a test point, then you would make a mistake



Linear classifiers (with offset)
* A linear classifier with parameters (6, 0,)
f (6, 00) sign( 6 -z + 6o )
_ { +1, if -2 +6) >0

-1, iff-2+60y <0
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Support vector machine
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* Still a quadratic programming problem (quadratic
objective, linear constraints)



The impact of offset

* Adding the offset parameter to the linear classifier can
substantially increase the margin
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Support vector machine

* Several desirable properties

- maximizes the margin on the training set (X~ good
generalization)

- the solution is unique and sparse ( X2 good generalization)

* But...

- the solution is sensitive to outliers, labeling errors, as they
may drastically change the resulting max-margin boundary

- if the training set is not linearly separable, there’s no
solution!



Support vector machine

* Relaxed quadratic optimization problem

penalty for constraint violation

1 n
minimize §HQ||2 + C;fi subject to
gi > Oa L= ey T

slack variables
permit us to violate
some of the margin
constraints



Support vector machine

* Relaxed quadratic optimization problem

penalty for constraint violation

1 n
minimize §HQ||2 + C ;fz subject to
gi > Oa L= ey T

slack variables

large C' = few (if any) violations permit us to violate

some of the margin

small ' = many violations constraints



Support vector machine

* Relaxed quadratic optimization problem

penalty for constraint violation

1 n
minimize §HQ||2 + C ;fz subject to
gi > Oa L= ey T

slack variables

large C' = few (if any) violations permit us to violate

some of the margin

small ' = many violations constraints

we can still interpret the margin as 1/|[6||



Support vector machine

* Relaxed quadratic optimization problem

1 T
minimize §||Q||2 + C;fi subject to

v (0 - z; + 6p)
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1—&, i=1,....n

0, 1=1,...,n




Support vectors and slack

* The solution now has three types of support vectors
NPT ST - .
minimize §| ol + C 2; ¢ subject to
1=
0, 1=1,...,n

f' - 0 constraint is tight
(2 but there’s no slack




Support vectors and slack

* The solution now has three types of support vectors
NPT ST - .
minimize §| ol + C z;fz subject to
1=
> 0, 1=1,....n

f' - 0 constraint is tight
(2 but there’s no slack

: point is not misclassified
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Support vectors and slack

* The solution now has three types of support vectors
NPT ST - .
minimize §| ol + C 2;5"/ subject to
1=
> 0, 1=1,...,n

&-_ - 0 constraint is tight
(2 but there’s no slack

ON fz c (0, 1) non-zero slack but the

point is not misclassified

1 non-zero slack and the
fi point is misclassified




Examples
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Examples
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Examples
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Examples

* C potentially affects the solution even in the separable

case
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Examples

* C potentially affects the solution even in the separable

case
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Examples
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* C potentially affects the solution even in the separable

case
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Non-linear dataset
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Different Types of kernel

Polynomial

Sigmoid

RBF ‘ T ‘ d
K(X1,X2) = (X11.X241)

< (x1,22) = tanh(axly+ )
—||(z1 — 22)| ]
K (x1,22) = e 20°




Polynomial Kernel

« K(X1,X2) = ¢(X1).p(X2)
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