Machine Learning: Bayesian Approach

KMA Solaiman
UMBC CMSC 478

Today:

- Bayes Rule
- Estimating parameters
- MLE
- MAP

$$
P(A \mid B)=\frac{P(B \mid A) * P(A)}{P(B)} \text { Bayes' rule }
$$

we call $P(A)$ the "prior"

and $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ the "posterior"

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53:370-418
...by no means merely a curious speculation in the doctrine of chances, but necessary to be solved in order to a sure foundation for all our reasonings concerning past facts, and what is likely to be hereafter.... necessary to be considered by any that would give a clear account of the strength of analogical or inductive reasoning...

Other Forms of Bayes Rule $\quad P(A \mid B)=\frac{P(B \mid A) * P(A)}{P(B)}$

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \sim A) P(\sim A)}
$$

$$
P(A \mid B \wedge X)=\frac{P(B \mid A \wedge X) P(A \wedge X)}{P(B \wedge X)}
$$

Applying Bayes Rule

$P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \sim A) P(\sim A)}$
$A=$ you have the flu, $B=$ you just coughed

$$
=0.17
$$

$\begin{array}{ll}\text { Assume: } \\ P(A)=0.05\end{array} \quad P(A \mid B)=\frac{.8 .05}{.8 .05+0.20 .95}$
$P(B \mid A)=0.80$
$P(A)=1-P(\tau A)$
what is $P($ flu \mid cough $)=P(A \mid B)$?

What does all this have to do with function approximation?

instead of $\mathrm{h}: \mathrm{X} \rightarrow \mathrm{Y}$,
learn $\quad P(Y \mid X)$

Discriminative vs Generative Models

Goal is same

Calculate posterior distribution
Probability of Data, $P(\boldsymbol{y} \mid \boldsymbol{X})$

Discriminative Models	Generative Models
Find the decision boundary that separates the classes	Say, you have two classes $-y_{1}$ and y_{2}, with features X_{1} and X_{2}
Only knows the differences between classes	First, looking at examples of y_{1}, build a model of what y_{1} looks like/ distribution of y_{1} 's features
To classify a new example, see which side of the decision boundary it falls	Then, looking at examples of y_{2}, build a model of what y_{2} looks like/ distribution of y_{2} 's features
	To classify a new example, match the new example with model of each class, to see whether the new example looks more like y_{1} or more like y_{2} we had seen in the training set

Discriminative vs Generative Models

Goal is same

$$
\text { Calculate } P(y \mid X)
$$

$$
\widehat{y}=\underset{y}{\operatorname{argmax}} P(y \mid X)
$$

Discriminative Models	Generative Models
Find the decision boundary that separates the classes	Say, you have two classes $-y_{1}$ and y_{2}, with features X_{1} and X_{2}
Only knows the differences between classes	First, looking at examples of y_{1}, build a model of what y_{1} looks like/distribution of y_{1} 's features
To classify a new example, see which side of the decision boundary it falls	Then, looking at examples of y_{2}, build a model of what y_{2} looks like/distribution of y_{2} 's features
	To classify a new example, match the new example with model of each class, to see whether the new example looks more like y_{1} or more like y_{2} we had seen in the training set

Discriminative vs Generative Models

Discriminative Models	Generative Models
Directly learn the function mapping	Calculate
$\quad \boldsymbol{h}: \boldsymbol{X} \rightarrow \boldsymbol{y}$	

Discriminative vs Generative Models

Discriminative Models	Generative Models
Directly learn the function mapping $h: X \rightarrow y$ or, Calculate likelihood $P(y \mid X)$	Calculate $P(y \mid X)$ from $P(X \mid y)$ and $P(y)$ But Joint Distribution $P(X, y)=P(X \mid y) P(y)$

1. Assume some functional form for $\boldsymbol{P}(\boldsymbol{y} \mid \boldsymbol{X})$
2. Estimate parameters of $\boldsymbol{P}(\boldsymbol{y} \mid \boldsymbol{X})$ directly from training data
3. Assume some functional form for $P(y), P(X \mid y)$
4. Estimate parameters of $\boldsymbol{P}(\boldsymbol{X} \mid \boldsymbol{y}), \boldsymbol{P}(\boldsymbol{y})$ directly from training data
5. Use Bayes rule to calculate $\boldsymbol{P}(\boldsymbol{y} \mid \boldsymbol{X})$

The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

A	B	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

[A. Moore]

The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of values (M Boolean variables $\rightarrow 2^{\mathrm{M}}$ rows).

A	B	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

[A. Moore]

The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of values (M Boolean variables $\rightarrow 2^{\mathrm{M}}$ rows).

A	B	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

2. For each combination of values, say how probable it is.

[A. Moore]

The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of values (M Boolean variables $\rightarrow 2^{\mathrm{M}}$ rows).
2. For each combination of values, say how probable it is.
3. If you subscribe to the axioms of probability, those probabilities must sum to 1 .

A	B	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

[A. Moore]

Using the Joint Distribution

One you have the JD you can ask for the

$$
P(E)=\sum_{\text {rows matching } E} P(\text { row })
$$

probability of any logical
expression involving
these variables
[A. Moore]

Using the Joint

$\mathrm{P}($ Poor Male $)=0.4654 \quad P(E)=\sum_{\text {rows matching } E} P($ row $)$
[A. Moore]

Using the Joint

$$
P(\text { Poor })=0.7604
$$

$$
P(E)=\sum_{\text {rows matching } E} P(\text { row })
$$

[A. Moore]

Inference with the Joint

$$
P\left(E_{1} \mid E_{2}\right)=\frac{P\left(E_{1} \wedge E_{2}\right)}{P\left(E_{2}\right)}=\frac{\sum_{\text {rows matching } E_{1} \text { and } E_{2}} P(\text { row })}{\sum_{\text {rows matching } E_{2}} P(\text { row })}
$$

$P($ Male \mid Poor $)=0.4654 / 0.7604=0.612$
[A. Moore]

Learning and the Joint Distribution

Suppose we want to learn the function $\mathrm{f}:<\mathrm{G}, \mathrm{H}>\rightarrow \mathrm{W}$
Equivalently, P(W|G, H)
Solution: learn joint distribution from data, calculate $P(W \mid G, H)$
e.g., $\mathrm{P}(\mathrm{W}=$ rich | $\mathrm{G}=$ female, $\mathrm{H}=40.5-\mathrm{e}=$

sounds like the solution to learning $\mathrm{h}: \mathrm{X} \rightarrow \mathrm{Y}$, or $P(Y \mid X)$.

Are we done?

sounds like the solution to

learning $\mathrm{h}: \mathrm{X} \rightarrow \mathrm{Y}$,
or $P(Y \mid X)$. $\quad 2^{10}=1024$

Main problem: learning $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$ can require more data than we have
consider learning Joint Dist. with 100 attributes
\# of rows in this table? $2^{100} \geqslant 100^{10}=10^{30}$ \# of people on earth?
fraction of rows with 0 training examples? 0.9999

What to do?

1. Be smart about how we estimate probabilities from sparse data

- maximum likelihood estimates
- maximum a posteriori estimates

2. Be smart about how to represent joint distributions

- Bayes networks, graphical models

1. Be smart about how we estimate probabilities

Estimating Probability of Heads

- I show you the above coin X, and hire you to estimate the probability that it will turn up heads $(X=1)$ or tails $(X=0)$
- You flip it repeatedly, observing
- it turns up heads α_{1} times
- it turns up tails α_{0} times
- Your estimate for $P(X=1)$ is....?

Estimating $\theta=P(X=1)$

Test A:

100 flips: 51 Heads ($X=1$), 49 Tails ($X=0$)

$$
\frac{\alpha_{1}}{\alpha_{1}+\alpha_{0}}=\frac{51}{100} \rightarrow \hat{P}(x=1)=0.51
$$

Test B:
3 flips: 2 Heads $(X=1),{ }_{1}^{\alpha} \stackrel{\circ}{\text { Thails }}(X=0)$

$$
=\frac{2}{2+1}=0.666
$$

Estimating $\theta=P(X=1)$
Case C: (online learning)

- keep flipping, want single learning algorithm that gives reasonable estimate after each flip

$$
\begin{aligned}
& \alpha_{1}=\# \text { obs.hends }(x=1) \quad n=\alpha_{1}+\alpha_{0} \\
& \alpha_{0}= \pm \text { obs } x=0 \\
& \beta_{1}=甘 \text { hallucinated } x=1 \text { 's } \\
& \beta_{0}=4 \text { hallocinutad } x=0 \text { s } \\
& \frac{\alpha_{1}+10}{\left(\alpha_{1}+10\right)+\left(\alpha_{0}+10\right)} \rightarrow \frac{\left(\alpha_{1}+\beta_{1}\right)}{\left(\alpha_{1}+\beta_{1}\right)+\left(\alpha_{0}+\beta_{0}\right)}
\end{aligned}
$$

Principles for Estimating Probabilities

Principle 1 (maximum likelihood):

- choose parameters θ that maximize $\mathbf{P (d a t a | \theta)}$
- e.g.,

$$
\hat{\theta}^{M L E}=\frac{\alpha_{1}}{\alpha_{1}+\alpha_{0}}
$$

Principle 2 (maximum a posteriori prob.):

- choose parameters θ that maximize $\mathbf{P}(\boldsymbol{\theta} \mid$ data)
- e.g.

$$
\hat{\theta}^{M A P}=\frac{\alpha_{1}+\text { \#hallucinated_1s }}{\left(\alpha_{1}+\text { \#hallucinated_1s }\right)+\left(\alpha_{0}+\text { \#hallucinated_0s }\right)}
$$

Maximum Likelihood Estimation

$P(X=1)=\underline{\theta} \quad P(X=0)=(1-\theta)$

Data $\mathrm{D}:=\left\{\begin{array}{llll}1 & 0 & 0 & 1 \\ \hat{1} & \hat{1} & \uparrow & \uparrow\end{array}\right.$
$P(\mathrm{D} \mid \theta)=$
$\theta \cdot(1-\theta) \cdot(1-\theta) \cdot \theta \cdot \theta=\theta^{\alpha_{1}}(1-\theta)^{\alpha_{0}}$

Flips produce data D with α_{1} heads, α_{0} tails

- flips are independent, identically distributed 1's and 0's (Bernoulli)
- α_{1} and α_{0} are counts that sum these outcomes (Binomial)

$$
P(D \mid \theta)=P\left(\alpha_{1}, \alpha_{0} \mid \theta\right)=\theta^{\alpha_{1}}(1-\theta)^{\alpha_{0}}
$$

Maximum Likelihood Estimate for Θ

$$
\begin{aligned}
\hat{\theta} & =\arg \max _{\theta} \ln P(\mathcal{D} \mid \theta) \\
& =\arg \max _{\theta} \ln \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
\end{aligned}
$$

■ Set derivative to zero:

$$
\frac{d}{d \theta} \ln P(\mathcal{D} \mid \theta)=0
$$

[C. Guestrin]

$$
\begin{aligned}
& \hat{\theta}=\arg \max _{\theta} \ln P(D \mid \theta) \\
& =\arg \max _{\theta} \ln \left[\theta^{\alpha_{1}}(1-\theta)^{\alpha_{0}}\right] \\
& \text { Set derivative to zero: } \\
& \frac{d}{d \theta} \ln P(\mathcal{D} \mid \theta)=0 \\
& \text { hint: } \frac{\partial \ln \theta}{\partial \theta}=\frac{1}{\theta} \\
& \frac{\partial}{\partial \theta} \alpha_{1} \ln \theta+\alpha_{0} \ln (1-\theta) \\
& \alpha_{1} \frac{1}{\theta}+\alpha_{0} \frac{\partial \ln (1-0)}{\partial \theta} \\
& 0=\alpha_{1} \frac{1}{\theta}-\frac{\alpha_{0}}{1-\theta} \underbrace{\frac{\partial \ln (1-\theta)}{\partial(1-\theta)}}_{\frac{1}{1-\theta}} \cdot \underbrace{\frac{\partial(1-\theta)}{\partial \theta}}_{-1} \\
& \theta=\frac{\alpha_{1}}{\alpha_{1}+\alpha_{0}}
\end{aligned}
$$

Summary:
 Maximum Likelihood Estimate

- Each flip yields boolean value for X

$$
X \sim \text { Bernoulli: } P(X)=\theta^{X}(1-\theta)^{(1-X)}
$$

- Data set D of independent, identically distributed (iid) flips produces α_{1} ones, α_{0} zeros (Binomial)

$$
\begin{aligned}
& P(D \mid \theta)=P\left(\alpha_{1}, \alpha_{0} \mid \theta\right)=\theta^{\alpha_{1}}(1-\theta)^{\alpha_{0}} \\
& \hat{\theta}^{M L E}=\operatorname{argmax}_{\theta} P(D \mid \theta)=\frac{\alpha_{1}}{\alpha_{1}+\alpha_{0}}
\end{aligned}
$$

Principles for Estimating Probabilities

Principle 1 (maximum likelihood):

- choose parameters θ that maximize $P($ data | θ)

Principle 2 (maximum a posteriori prob.):

- choose parameters θ that maximize
$P(\theta \mid$ data $)=\frac{P(\text { data } \mid \theta) P(\theta)}{P(\text { data })}$

Beta prior distribution - $P(\theta)$

$$
P(\theta)=\frac{\theta^{\beta_{H}-1}(1-\theta)^{\beta_{T}-1}}{B\left(\beta_{H}, \beta_{T}\right)} \sim \operatorname{Beta}\left(\beta_{H}, \beta_{T}\right)
$$

- Likelihood function: $\quad P(\mathcal{D} \mid \theta)=\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}$
- Posterior: $\underline{P(\theta \mid \mathcal{D})} \propto \underline{P(\mathcal{D} \mid \theta) P(\theta)}$

Beta prior distribution - $P(\theta)$

${ }_{P}(\theta)=\frac{\theta^{\beta_{H}-1}(1-\theta)}{B\left(\beta_{H}, \beta_{T}\right)} \sim \operatorname{Beta}\left(\beta_{H}, \beta_{T}\right)$

- Likelihood function: $P(\mathcal{D} \mid \theta)=\theta \theta^{\widetilde{®_{H}}(1-\theta)^{\alpha}}$
- Posterior: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$

$$
\alpha \theta^{\alpha^{\alpha+\beta_{H}-1}}(1-\theta)^{\alpha_{T}+\beta_{T}-1}
$$

$$
\hat{\theta}^{\text {MAP }}=\frac{\left(\alpha_{H}+\beta_{H}-1\right)}{\left(\alpha_{H}+\beta_{H}-1\right)+\left(\alpha_{T}+\beta_{T}-1\right)}
$$

Beta prior distribution - $\mathrm{P}(\theta)$

$$
P(\theta)=\frac{\theta^{\beta_{H}-1}(1-\theta)^{\beta_{T}-1}}{B\left(\beta_{H}, \beta_{T}\right)} \sim \operatorname{Beta}\left(\beta_{H}, \beta_{T}\right)
$$

[C. Guestrin]

Eg. 1 Coin flip problem
Likelihood is ~ Binomial

$$
P(\mathcal{D} \mid \theta)=\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
$$

If prior is Beta distribution,

$$
P(\theta)=\frac{\theta^{\beta_{H}-1}(1-\theta)^{\beta_{T}-1}}{B\left(\beta_{H}, \beta_{T}\right)} \sim \operatorname{Beta}\left(\beta_{H}, \beta_{T}\right)
$$

Then posterior is Beta distribution

$$
P(\theta \mid D) \sim \operatorname{Beta}\left(\alpha_{H}+\beta_{H}, \alpha_{H}+\beta_{H}\right)
$$

and MAP estimate is therefore

$$
\hat{\theta}^{M A P}=\frac{\alpha_{H}+\beta_{H}-1}{\left(\alpha_{H}+\beta_{H}-1\right)+\left(\alpha_{T}+\beta_{T}-1\right)}
$$

Eg. 2 Dice roll problem (6 outcomes instead of 2) Likelihood is $\sim \operatorname{Multinomial}\left(\theta=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{\mathrm{k}}\right\}\right)$

$$
P(\mathcal{D} \mid \theta)=\theta_{1}^{\alpha_{1}} \theta_{2}^{\alpha_{2}} \ldots \theta_{k}^{\alpha_{k}}
$$

If prior is Dirichlet distribution,

$$
P(\theta)=\frac{\theta_{1}^{\beta_{1}-1} \theta_{2}^{\beta_{2}-1} \ldots \theta_{k}^{\beta_{k}-1}}{B\left(\beta_{1}, \ldots, \beta_{k}\right)} \sim \operatorname{Dirichlet}\left(\beta_{1}, \ldots, \beta_{k}\right)
$$

Then posterior is Dirichlet distribution

$$
P(\theta \mid D) \sim \operatorname{Dirichlet}\left(\beta_{1}+\alpha_{1}, \ldots, \beta_{k}+\alpha_{k}\right)
$$

and MAP estimate is therefore

$$
\hat{\theta}_{i}^{M A P}=\frac{\alpha_{i}+\beta_{i}-1}{\sum_{j=1}^{k}\left(\alpha_{j}+\beta_{j}-1\right)}
$$

MLE vs MAP

- Goal is same
- Calculate posterior distribution
- Probability of Data, $P(\boldsymbol{y} \mid \boldsymbol{X})$
- MLE
- Does not use prior
- Starts with an assumption
- MAP
- Uses Bayes Rule
- Uses Prior
- $P(y \mid X) \propto P(X \mid y) P(y)$

Some terminology

- Likelihood function: $P($ data $\mid \theta)$
- Prior: $\mathrm{P}(\theta)$
- Posterior: $\mathrm{P}(\theta \mid$ data $)$
- Conjugate prior: $P(\theta)$ is the conjugate prior for likelihood function $P($ data $\mid \theta)$ if the forms of $P(\theta)$ and $P(\theta \mid$ data) are the same.

You should know

- Probability basics
- random variables, conditional probs, ...
- Bayes rule
- Joint probability distributions
- calculating probabilities from the joint distribution
- Estimating parameters from data
- maximum likelihood estimates
- maximum a posteriori estimates
- distributions - binomial, Beta, Dirichlet, ...
- conjugate priors

Extra slides

Independent Events

- Definition: two events A and B are independent if $P\left(A^{\wedge} B\right)=P(A)^{*} P(B)$
- Intuition: knowing A tells us nothing about the value of B (and vice versa)

Picture "A independent of B"

Expected values

Given a discrete random variable X, the expected value of X, written $E[X]$ is

$$
E[X]=\sum_{x \in \mathcal{X}} x P(X=x)
$$

Example:

\mathbf{X}	$\mathbf{P}(\mathbf{X})$
0	0.3
1	0.2
2	0.5

Expected values

Given discrete random variable X , the expected value of X, written $E[X]$ is

$$
E[X]=\sum_{x \in \mathcal{X}} x P(X=x)
$$

We also can talk about the expected value of functions of X

$$
E[f(X)]=\sum_{x \in \mathcal{X}} f(x) P(X=x)
$$

Covariance

Given two discrete r.v.'s X and Y, we define the covariance of X and Y as

$$
\operatorname{Cov}(X, Y)=E[(X-E(X))(Y-E(Y))]
$$

e.g., $X=$ gender, $Y=$ playsFootball
or $\mathrm{X}=$ gender, $\mathrm{Y}=$ leftHanded

Remember: $E[X]=\sum_{x \in \mathcal{X}} x P(X=x)$

