
Machine Learning: Bayesian Approach
KMA Solaiman

UMBC CMSC 478  

Today: 
• Bayes Rule
• Estimating parameters

• MLE
• MAP

some of these slides are derived 
from William Cohen, Andrew Moore, Aarti Singh, Eric Xing,  Carlos Guestrin, Tom M. Mitchell.   - Thanks! 



P(B|A) * P(A) 

P(B) 
P(A|B) = 

Bayes, Thomas (1763) An essay 
towards solving a problem in the doctrine 
of chances. Philosophical Transactions of 
the Royal Society of London, 53:370-418 

…by no means merely a curious speculation in the doctrine of chances, 
but necessary to be solved in order to a sure foundation for all our 
reasonings concerning past facts, and what is likely to be hereafter…. 
necessary to be considered by any that would give a clear account of the 
strength of analogical or inductive reasoning… 

Bayes� rule 

we call P(A) the �prior� 

and P(A|B) the �posterior� 



Other Forms of Bayes Rule 
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P(B|A) * P(A) 

P(B) 
P(A|B) = 



Applying Bayes Rule 

€

P(A | B) = P(B | A)P(A)
P(B | A)P(A) + P(B |~ A)P(~ A)

A = you have the flu,   B = you just coughed 

Assume: 
P(A) = 0.05 
P(B|A) = 0.80 
P(B| ~A) = 0.20 

what is P(flu | cough) = P(A|B)? 



What does all this have to do with 
function approximation? 

instead of  h: X ! Y, 
learn          P(Y | X)



Discriminative vs Generative Models 

Discriminative Models Generative Models
Find the decision boundary that 
separates the classes

Say, you have two classes – !! and !", with features "!  and "" 

Only knows the differences between 
classes 

First, looking at examples of !!, build a model of 
what !! looks like/ distribution of !!’s features

To classify a new example, see which 
side of the decision boundary it falls

Then, looking at examples of !", build a model of 
what !" looks like/ distribution of !"’s features
To classify a new example, 
match the new example with model of each class, to see whether the 
new example looks more like !! or more like !"	we had seen in the 
training set 

Goal is same
Calculate posterior distribution 

Probability of Data, !(#|%)	
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Discriminative vs Generative Models 

Discriminative Models Generative Models
Directly learn the function 
mapping 

/: 	%	 → 	#
or, Calculate likelihood

!(#|%)	

Calculate
! # %

HOW?

1. Assume some functional
form for !(#|%)

2. Estimate parameters
of !(#|%)	directly from
training data



Discriminative vs Generative Models 

Discriminative Models Generative Models
Directly learn the function 
mapping 

/: 	%	 → 	#
or, Calculate likelihood

!(#|%)	

Calculate
!(#|%)	

from !(%|#)	 and ! #

But Joint Distribution
! %, # = 	!(%|#)	!(#)

1. Assume some functional
form for !(#|%)

2. Estimate parameters
of !(#|%)	directly from
training data

1. Assume some functional form
for !(#), !(%|#)

2. Estimate parameters of !(%|#), !(#)	directly
from training data

3. Use Bayes rule to calculate !(#	|%)



The Joint Distribution 

Recipe for making a joint 
distribution of M variables: 

[A. Moore] 

A B C Prob 
0 0 0 0.30 

0 0 1 0.05 

0 1 0 0.10 

0 1 1 0.05 

1 0 0 0.05 

1 0 1 0.10 

1 1 0 0.25 

1 1 1 0.10 

 

A 

B 

C 
0.05 

0.25 

0.10 0.05 0.05 

0.10 

0.10 
0.30 

Example: Boolean 
variables A, B, C 



The Joint Distribution 

Recipe for making a joint 
distribution of M variables: 

1.  Make a truth table listing all
combinations of values (M
Boolean variables ! 2M rows).
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variables A, B, C 



The Joint Distribution 

Recipe for making a joint 
distribution of M variables: 

1.  Make a truth table listing all
combinations of values (M
Boolean variables ! 2M rows).

2.  For each combination of
values, say how probable it is.
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The Joint Distribution 

Recipe for making a joint 
distribution of M variables: 

1.  Make a truth table listing all
combinations of values (M
Boolean variables ! 2M rows).

2.  For each combination of
values, say how probable it is.

3.  If you subscribe to the axioms
of probability, those
probabilities must sum to 1.

[A. Moore] 

A B C Prob 
0 0 0 0.30 

0 0 1 0.05 

0 1 0 0.10 

0 1 1 0.05 

1 0 0 0.05 

1 0 1 0.10 

1 1 0 0.25 

1 1 1 0.10 

 

A 

B 

C 
0.05 

0.25 

0.10 0.05 0.05 

0.10 

0.10 
0.30 

Example: Boolean 
variables A, B, C 



Using the 
Joint 
Distribution 

One you have the JD 
you can ask for the 
probability of any logical 
expression involving 
these variables 
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[A. Moore] 



Using the 
Joint 

P(Poor Male) = 0.4654 ∑=
E

PEP
 matching rows

)row()(

[A. Moore] 



Using the 
Joint 

P(Poor) = 0.7604 ∑=
E

PEP
 matching rows

)row()(

[A. Moore] 



Inference 
with the 
Joint 
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P(Male | Poor) = 0.4654 / 0.7604 = 0.612 

[A. Moore] 



Learning and 
the Joint 
Distribution 

Suppose we want to learn the function f: <G, H> ! W 

Equivalently, P(W | G, H) 

Solution: learn joint distribution from data, calculate P(W | G, H) 

e.g., P(W=rich | G = female, H = 40.5- ) =

[A. Moore] 



sounds like the solution to 
learning h: X ! Y, 

or P(Y | X). 

Are we done?



sounds like the solution to 
learning h: X ! Y, 

or P(Y | X). 

 Main problem: learning P(Y|X)  
can require more data than we have

consider learning Joint Dist. with 100 attributes 
# of rows in this table?  
# of people on earth? 
fraction of rows with 0 training examples?



What to do? 
1.  Be smart about how we estimate

probabilities from sparse data
–  maximum likelihood estimates
–  maximum a posteriori estimates

2.  Be smart about how to represent joint
distributions

–  Bayes networks, graphical models



1. Be smart about how we
estimate probabilities



Estimating Probability of Heads 
X=1 X=0 



Estimating θ = P(X=1) 
Test A: 
 100 flips: 51 Heads (X=1), 49 Tails (X=0) 

Test B: 
 3 flips:  2 Heads (X=1), 1 Tails (X=0) 

X=1 X=0 



Case C: (online learning) 
•  keep flipping, want single learning algorithm

that gives reasonable estimate after each flip

X=1 X=0 

Estimating θ = P(X=1) 



Principles for Estimating Probabilities 

Principle 1 (maximum likelihood): 
•  choose parameters θ that maximize P(data | θ)
•  e.g.,

Principle 2 (maximum a posteriori prob.): 
•  choose parameters θ that maximize P(θ | data)
•  e.g.



Maximum Likelihood Estimation 
P(X=1) = θ  P(X=0) = (1-θ) 

Data D:  

Flips produce data D with  heads,  tails 
•  flips are independent, identically distributed 1’s and 0’s

(Bernoulli)
•  and  are counts that sum these outcomes (Binomial) 

X=1 X=0 



Maximum Likelihood Estimate for Θ 

[C. Guestrin]  



hint: 



Summary:  
Maximum Likelihood Estimate 

X=1 X=0 
P(X=1) = θ 

P(X=0) = 1-θ 
(Bernoulli) 



Principles for Estimating Probabilities 

Principle 1 (maximum likelihood): 
•  choose parameters θ that maximize

P(data | θ)

Principle 2 (maximum a posteriori prob.): 
•  choose parameters θ that maximize 

P(θ | data) = P(data | θ) P(θ)
 P(data) 



Beta prior distribution – P(θ) 

KMA Solaiman

KMA Solaiman

KMA Solaiman



Beta prior distribution – P(θ) 



Beta prior distribution – P(θ) 

[C. Guestrin]  



and MAP estimate is therefore  



and MAP estimate is therefore  



MLE vs MAP

• Goal is same
• Calculate posterior distribution 
• Probability of Data, !(#|%)	

• MLE
• Does not use prior
• Starts with an assumption 

• MAP
• Uses Bayes Rule
• Uses Prior
• ! # % 	∝ ! % # !(#)	



Some terminology 
•  Likelihood function:  P(data | θ) 
•  Prior: P(θ) 
•  Posterior: P(θ | data) 

•  Conjugate prior: P(θ) is the conjugate 
prior for likelihood function P(data | θ) if 
the forms of P(θ) and P(θ | data) are the 
same. 



You should know 

•  Probability basics 
–  random variables, conditional probs, … 
–  Bayes rule 
–  Joint probability distributions 
–  calculating probabilities from the joint distribution 

•  Estimating parameters from data 
–  maximum likelihood estimates 
–  maximum a posteriori estimates 
–  distributions – binomial, Beta, Dirichlet, … 
–  conjugate priors 
 



Extra slides 



Independent Events 
•  Definition: two events A and B are 

independent if   P(A ^ B)=P(A)*P(B) 
•  Intuition: knowing A tells us nothing 

about the value of B (and vice versa) 



Picture �A independent of B� 



Expected values 
Given a discrete random variable X, the expected value 

of X, written E[X] is 
 
 
 
Example: 
 
 
 
 

X P(X) 

0 0.3 
1 0.2 
2 0.5 



Expected values 
Given discrete random variable X, the expected value of 

X, written E[X] is 
 
 
 
 
We also can talk about the expected value of functions 

of X 



Covariance 
Given two discrete r.v.�s X and Y, we define the 

covariance of X and Y as 
 
 
e.g., X=gender, Y=playsFootball 
or     X=gender, Y=leftHanded 
 
 
Remember: 




