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Today:

 Bayes Rule

« Estimating parameters
« MLE
- MAP

some of these slides are derived

from William Cohen, Andrew Moore, Aarti Singh, Eric Xing, Carlos Guestrin, Tom M. Mitchell. - Thanks!



P(BIA) * P(A) :
P(A|B) = P(B) Bayes’' rule

we call P(A) the “prior” T
Bayes, Thomas (1763) An essay
towards solving a problem in the doctrine

and P(Al B) the “ poste rior” of chances. Philosophical Transactions of
the Royal Society of London, 53:370-418

...by no means merely a curious speculation in the doctrine of chances,
but necessary to be solved in order to a sure foundation for all our
reasonings concerning past facts, and what is likely to be hereatfter....
necessary to be considered by any that would give a clear account of the
strength of analogical or inductive reasoning...



P(BIA) ™ P(A)

Other Forms of Bayes Rule pB) = o E)

P(B| A)P(A)
P(B| A)P(A)+ P(B|~ A)P(~ A)

P(41B) =

P(B| AN X)P(AANX)
P(B A X)

P(ABAX)=



Applying Bayes Rule

P(B1A)P(A)

A B BIAPM) + PB I~ AP A

A = you have the flu, B = you just coughed

= 0.7
Assume: FeAlB) = -7 .9
P(A) =0.05 T .054 0.2 2.75
P(B|A) = 0.80

P(B| ~A) = 0.20 POA) = (=P (A )

what is P(flu | cough) = P(A|B)?



What does all this have to do with
function approximation?

instead of h: X 2> Y,
learn P(Y | X)



Discriminative vs Generative Models

Goal is same
Calculate posterior distribution
Probability of Data, P(y|X)

Discriminative Models Generative Models

Find the decision boundary that Say, you have two classes — y; and y,, with features X; and X,
separates the classes

Only knows the differences between First, looking at examples of y;, build a model of
classes what y; looks like/ distribution of y;’s features

To classify a new example, see which Then, looking at examples of y,, build a model of
side of the decision boundary it falls  what y, looks like/ distribution of y,’s features

To classify a new example,
match the new example with model of each class, to see whether the

new example looks more like y; or more like y, we had seen in the
training set



Discriminative vs Generative Models

Goal is same

Calculate P(y|X) y = argmax P(y|X)
y

Discriminative Models Generative Models

Find the decision boundary that Say, you have two classes — y; and y,, with features X; and X,
separates the classes

Only knows the differences between First, looking at examples of y;, build a model of
classes what y; looks like/ distribution of y;’s features

To classify a new example, see which Then, looking at examples of y,, build a model of

side of the decision boundary it falls  what y, looks like/ distribution of y,’s features
To classify a new example,
match the new example with model of each class, to see whether the
new example looks more like y; or more like y, we had seen in the
training set



Discriminative vs Generative Models

Discriminative Models Generative Models

Directly learn the function Calculate
mapping P(y|X)
h: X - vy
or, Calculate likelihood HOW?
P(y|X)

1. Assume some functional

form for P(y|X)
2. Estimate parameters

of P(y|X) directly from

training data



Discriminative vs Generative Models

Discriminative Models Generative Models

Directly learn the function Calculate
mapping P(y|X)
h: X - vy from P(X|y) and P(y)
or, Calculate likelihood
P(y|X) But Joint Distribution
P(X,y) = P(X|y) P(y)

1. Assume some functional 1. Assume some functional form

form for P(y|X) for P(y), P(X|y)
2. Estimate parameters 2. Estimate parameters of P(X|y), P(y) directly

of P(y|X) directly from from training data

training data 3. Use Bayes rule to calculate P(y |X)



The Joint Distribution

Example: Boolean
variables A, B, C

. . . A B C Prob
Recipe for making a joint 5 5 5 530
distribution of M variables: 0 0 1 0.05
0 1 0 0.10
0 1 1 0.05
1 0 0 0.05
1 0 1 0.10
1 1 0 0.25
1 1 1 0.10
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The Joint Distribution

Example: Boolean
variables A, B, C

Reci £ ki ioint A B C Prob
ecipe for making a join 5 5 5 530
distribution of M variables: 0 0 1 0.05
0 1 0 0.10
1. Make a truth table listing all 0 ! 1 0.95
. . 1 0 0 0.05
combinations of values (M - - " P
Boolean variables 2 2Mrows). [; 1 0 0.25
1 1 1 0.10

2. For each combination of
values, say how probable it is.

3. If you subscribe to the axioms
of probability, those
probabilities must sum to 1.




gender hours_worked wealth

USlng the Female v0:40.5- poor 0253122 |G

rich  0.0245895 ||}

J OI nt v1:40.5+ poor 0.0421768 [}

D- tb t rich  0.0116293 ||
IStrioution Male  v0:40.5- poor 0331313 [

rich  0.0971295 [N
v1:40.5+ poor 0.134106 |G
rich  0.105933 |

One you have the JD P(E) = EP(row)
you can ask for the rows matching E

probability of any logical
expression involving
these variables

[A. Moore]



gender hours_worked wealth

. Female v0:40.5- poor 0253122 |G
USlng the rich  0.0245895 ||}

" v1:40.5+ poor 0.0421768 |}
Joint

rich  0.0116293 |

Male  v0:40.5- oor _0.331313 NG
rich  0.0971295 |

' v1:40.5+ poor _0.134106 JEEN
rich  0.105933 [N

P(Poor Male) = 0.4654 P(E)= ) P(row)

rows matching £

[A. Moore]



Using the
Joint

P(Poor) = 0.7604

gender hours_worked wealth
(Female v0:405-  poor 0253122 NNEGEGGGGGGEGE
rich  0.0245895 ||}
 v1:405+ oor _ 0.0421768 il
rich  0.0116293 |
Male  v0:40.5- cor _ 0.331313 GG
rich  0.0971295 |
d v1:405+  poor  0.134106 NN
ﬁ rich  0.105933 [N
P(E)= Y P(row)
rows matching £

[A. Moore]




gender hours_worked wealth

I nfe rence (Female v0:40.5-  poor 0253122 NG

" th th rich  0.0245895 ||}
Wi e  v1:405+ poor _ 0.0421768 il
" rich  0.0116293 |
Joint
ale v0:40.5- oor 0.331313

rich  0.0971295 |

t v1:40.5+ poor  0.134106 —

rich  0.105933 [N

P(row)
P(El A Ez) _ rows matching £, and E,

P(E,) 2 P(row)

rows matching £,

P(E, | Ey) =

P(Male | Poor) = 0.4654 / 0.7604 = 0.612

[A. Moore]



gender hours_worked wealth

Female v0:40.5- poor )0.253122 |

Leaming and rich \0.0245895 ||}
th e J Olnt v1:40.5+ poor 0.0421768 i

rich  0.0116293 ||
Distribution Male  v0:40.5- poor 0331313

rich  0.0971295 [N
v1:40.5+ poor 0.134106 |G
rich  0.105933 N

Suppose we want to learn the function f: <G, H> > W
Equivalently, P(W | G, H)
Solution: learn joint distribution from data, calculate P(W | G, H)

e.g., P(W=rich | G = female, H=40.5-) =

[A. Moore]



sounds like the solution to
learning h: X =2 Y,
or P(Y | X).

Are we done?



sounds like the solution to
learning h: X =2 Y,
or P(Y | X). =027

Main problem: learning P(Y|X)
can require more data than we have

consider learning Joint Dist. with 100 attributes
# of rows in this table? 2°°>> jpes = /5°°

# of people on earth?

fraction of rows with 0 training examples? 0.77494



What to do?

1. Be smart about how we estimate
probabilities from sparse data

— maximum likelihood estimates
— maximum a posteriori estimates

2. Be smart about how to represent joint
distributions

— Bayes networks, graphical models



1. Be smart about how we
estimate probabillities



Estimating Probability of Heads

e | show you the above coin X, and hire you to estimate
the probability that it will turn up heads (X = 1) or
tails (X = 0)

e You flip it repeatedly, observing

— 1t turns up heads oy times

— 1t turns up tails o times

e Your estimate for P(X = 1) is....7



Estimating 6 = P(X=1)

Test A: &, X

100 flips: 51 Heads (X=1), 49 Talls (X=0)
- ¥, _ 5
QL 4 & - ] ©D A7P{X<‘>:b.5—/

Test B: oL

3 flips: 2 Heads (X=1), 1Ta|Is (X=0)

. =2
25 )

= O.L44L



Estimating 6 = P(X=1)

Case C: (online learning)

+ keep flipping, want single learning algorithm
that gives reasonable estimate after each flip

0( = H: 0;5_ L\eqﬂ.s (7‘7-/>

|

O<6 = & ol:; X0
A=t wlvomded X 2%
- helloerautad X =05
O(]"" IO B > (O(I+ﬁ:\
(04,4'/0) 4 (o(o-élo) (b(‘J'/)Q N (o(a:ﬁi_)

V\:DZ\“’O<V




Principles for Estimating Probabilities

Principle 1 (maximum likelihood):
* choose parameters 6 that maximize P(data | 0) .

o A Qv
e.g., GMLE _ ™1 \S
1 + (-M
Sk
Principle 2 (maximum a posteriori prob.): Y

* choose parameters 0 that maximize P(0 | data)
* e.g.
GMAP _ oy + #hallucinated_1s
(o1 + #hallucinated_1s) + (¢ + #hallucinated_Os)




Maximum Likelihood Estimation

LP\(X=1) =§l P(X=0) = (1-8)

DataD:'—‘{[ O O ll‘ /
¢ &~ 4 F o

PCD\D): 9'()-9)—(1’97‘5 L& = @ (/,Q)db

Flips produce data D with (¥q heads X tails )

 flips are independent, identically distributed 1’s and 0’s
(Bernoulli)

« (X1 and (X( are counts that sum these outcomes (Binomial)

P(D|0) = P(a, aplf) = 0“1 (1 — 0)*




Maximum Likelihood Estimate for ©

" A
: 0 = arg meax In P(D | 0)
= arg meax INOH (1 —0)T

m Set derivative to zero: |4 | P(D | 0) =0

[C. Guestrin]



A

O — arg max In P(D|9) m Set derivative to zero:
V)

= argmax In [ (1 — 6)]

6
o
= o((l»;@ + o, lu(-0)
o\ — 4 ) dnlre@).
e 0

d
— InP(D|0) =0
I

O0lné l
00 0

hint; =




Summary:
Maximum Likelihood Estimate

e Each flip yields boolean value for X ((
X ~ Bernoulli: P(X) = QX(l — 0)<1—X)

Bernoulli)

e Data set D of independent, identically distributed (iid) flips pro-
duces aq ones, g zeros (Binomial)

P(Dl@) — P(Ckl,&()'(g) — (9041(1 — 9)0‘0

OMLE — argmaxy P(D]f) = —

a1+



Principles for Estimating Probabilities

Principle 1 (maximum likelihood):

* choose parameters 0 that maximize
P(data | ©)

Principle 2 (maximum a posteriori prob.):
« choose parameters 0 that maximize

P(0 | data) - P(data | 6) P(0)
P(data)




Beta prior distribution — P(0)
| 0%n—1(1 — 9)fr—1
B(BH, Br)

m Likelihood function: P(D|0) =6%7(1 —0)*T

m Posterior: P_(9_|D) X @ng | O)IP_@

P(0) = ~ Beta(By, B1)



KMA Solaiman

KMA Solaiman

KMA Solaiman


Beta prior distribution — P(6)

P(0) @ V= Beta(By, br)
BBy, Br) /

m Likelihood function: P(D | 6) @1 - 9)1’"2

m Posterior: P (0 | D) x (P(D |

é‘{‘\ ﬁﬁj( oLrtfe

Y
é’“ —~ le*ﬁf /)

é{ﬁ"ﬁﬁ‘b - @{‘T’bﬁﬂr—b




[ [A)
(=) = .

Beta pdf

Beta prior distribution — P(0)
) OBH—l(l _ 9).‘97‘—1

PO) = 5650

~ Beta(By. Br)

Betal2,2) Betal3,2) 5 Beta(30.20)

15 &

4

g -

3 x 3
@ S

2

0 _ 0

0.2 4 0 08 1 0 0.2 04 08 8 0 0.2 04 0 8
paramelnr valos paramelnr valos paramelnr valos

[C. Guestrin]



Eg. 1 Coin flip problem

Likelihood is ~ Binomial
P(D|0) =0%1(1—0)T
If prior is Beta distribution,
68r—1(1 — g)Br-1
BBy, Br)
Then posterior is Beta distribution
P(0|D) ~ Beta(layg + By, an + Br)
and MAP estimate is therefore
éMAP _ apg + By — 1
(ag + By — 1)+ (ap + Br — 1)

P(0) = ~ Beta(By, Br)




Eg. 2 Dice roll problem (6 outcomes instead of 2)
Likelihood is ~ Multinomial(0 = {0, O,, ..., O,})
P(D|0) =67105%...0,*
If prior is Dirichlet distribution,
B1—1 pBa—1 Pr—1
_ 011 922 ...Hk,k
B(fi, ..., B
Then posterior is Dirichlet distribution
P(0|D) ~ Dirichlet(81 + a1, ..., B, + o)

and MAP estimate is therefore
~MAP Q; + B’L — 1

0; -
Zj:1(04j + 5 — 1)

P(6)

~ Dirichlet(fy, . ..



MLE vs MAP

* Goal is same
* Calculate posterior distribution
* Probability of Data, P(y|X)

* MLE
* Does not use prior
e Starts with an assumption

* MAP
* Uses Bayes Rule
* Uses Prior

* P(y|X) <« P(X|y)P(y)



Some terminology
* Likelihood function: P(data | 0)

* Prior: P(6)
 Posterior: P(6 | data)

» Conjugate prior: P(0) is the conjugate
prior for likelihood function P(data | 0) if

the forms of P(0) and P(6 | data) are the
same.



You should know

* Probability basics
— random variables, conditional probs, ...
— Bayes rule
— Joint probability distributions
— calculating probabilities from the joint distribution

« Estimating parameters from data
— maximum likelihood estimates
— maximum a posteriori estimates
— distributions — binomial, Beta, Dirichlet, ...
— conjugate priors



Extra slides



Independent Events

» Definition: two events A and B are
independent it P(A " B)=P(A)*P(B)

* Intuition: knowing A tells us nothing
about the value of B (and vice versa)



Picture “A independent of B”



Expected values

Given a discrete random variable X, the expected value
of X, written E[X] is

E[X]=) zP(X =z)

reX
Example: X P(X)
0 0.3
1 0.2
2 0.5




Expected values

Given discrete random variable X, the expected value of
X, written E[X] is

E[X]=) zP(X =z)
T€EAX

We also can talk about the expected value of functions
of X

E[f( X)) =) f(z)P(X =z)

reX



Covariance

Given two discrete r.v.”s X and Y, we define the
covariance of X and Y as

Cov(X,Y)=E|(X — EX))(Y — E(Y))]

e.g., X=gender, Y=playsFootball
or X=gender, Y=leftHanded

Remember: E[X] =) zP(X
rEX





