Machine Learning: Bayesian Approach

KMA Solaiman UMBC CMSC 478

Today:

- Bayes Rule
- Estimating parameters
 - MLE
 - MAP

some of these slides are derived

from William Cohen, Andrew Moore, Aarti Singh, Eric Xing, Carlos Guestrin, Tom M. Mitchell. - Thanks!

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$
 Bayes' rule

we call P(A) the "prior"

```
and P(A|B) the "posterior"
```


Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London,* **53:370-418**

...by no means merely a curious speculation in the doctrine of chances, but necessary to be solved in order to a sure foundation for all our reasonings concerning past facts, and what is likely to be hereafter.... necessary to be considered by any that would give a clear account of the strength of *analogical* or *inductive reasoning*...

Other Forms of Bayes Rule $P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\sim A)P(\sim A)}$$

$$P(A | B \land X) = \frac{P(B | A \land X)P(A \land X)}{P(B \land X)}$$

Applying Bayes Rule $P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid \sim A)P(\sim A)}$ A = you have the flu, B = you just coughed = 0.17 $P(A|B) = \frac{.7.05}{.8.05+0.20.95}$ Assume: P(A) = 0.05P(B|A) = 0.80 $P(B| \sim A) = 0.20$ $P(A) = 1 - P(\neg A)$

what is P(flu | cough) = P(A|B)?

What does all this have to do with function approximation?

instead of h: $X \rightarrow Y$, learn P(Y | X)

Goal is same

Calculate posterior distribution

Probability of Data, P(y|X)

Discriminative Models	Generative Models
Find the decision boundary that separates the classes	Say, you have two classes – y_1 and y_2 , with features X_1 and X_2
Only knows the differences between classes	First, looking at examples of y_1 , build a model of what y_1 looks like/ distribution of y_1 's features
To classify a new example, see which side of the decision boundary it falls	Then, looking at examples of y_2 , build a model of what y_2 looks like/ distribution of y_2 's features
	To classify a new example, match the new example with model of each class, to see whether the new example looks more like y_1 or more like y_2 we had seen in the training set

Goal is same Calculate P(y|X)

 $\widehat{y} = \operatorname*{argmax}_{y} P(y|X)$

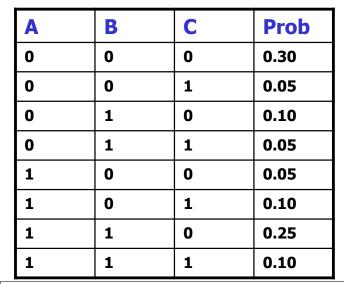
Discriminative Models	Generative Models
Find the decision boundary that separates the classes	Say, you have two classes – y_1 and y_2 , with features X_1 and X_2
Only knows the differences between classes	First, looking at examples of y_1 , build a model of what y_1 looks like/ distribution of y_1 's features
To classify a new example, see which side of the decision boundary it falls	Then, looking at examples of y_2 , build a model of what y_2 looks like/ distribution of y_2 's features
	To classify a new example, match the new example with model of each class, to see whether the new example looks more like y_1 or more like y_2 we had seen in the training set

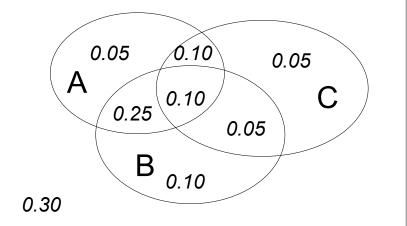
Discriminative Models	Generative Models
Directly learn the function	Calculate
mapping	P(y X)
$h: X \to y$	
or, Calculate likelihood	HOW?
P(y X)	
1. Assume some functional	
form for $P(y X)$	
2. Estimate parameters	
of $P(y X)$ directly from	
training data	

Discriminative Models	Generative Models
Directly learn the function mapping $h: X \rightarrow y$ or, Calculate likelihood P(y X)	Calculate P(y X) from $P(X y)$ and $P(y)$ But Joint Distribution P(X, y) = P(X y) P(y)
 Assume some functional form for P(y X) Estimate parameters of P(y X) directly from training data 	 Assume some functional form for P(y), P(X y) Estimate parameters of P(X y), P(y) directly from training data Use Bayes rule to calculate P(y X)

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

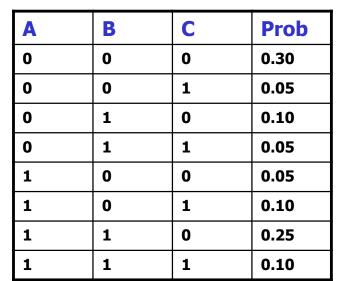


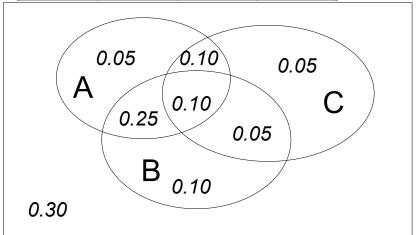


Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

1. Make a truth table listing all combinations of values (M Boolean variables $\rightarrow 2^{M}$ rows).



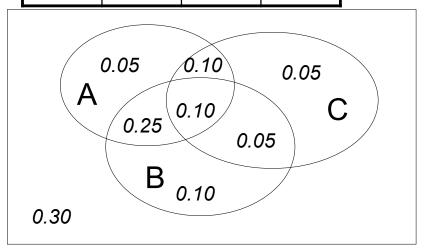


Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

- 1. Make a truth table listing all combinations of values (M Boolean variables $\rightarrow 2^{M}$ rows).
- 2. For each combination of values, say how probable it is.

Α	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

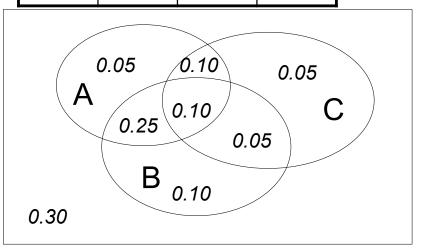


Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

- 1. Make a truth table listing all combinations of values (M Boolean variables $\rightarrow 2^{M}$ rows).
- 2. For each combination of values, say how probable it is.
- If you subscribe to the axioms of probability, those probabilities must sum to 1.

Α	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10



Using the Joint Distribution

gender	hours_worked	wealth	
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	v1:40.5+	poor	0.0421768
		rich	0.0116293
Male	v0:40.5-	poor	0.331313
		rich	0.0971295
	v1:40.5+	poor	0.134106
		rich	0.105933

One you have the JD you can ask for the probability of **any** logical expression involving these variables

 $P(E) = \sum P(\text{row})$ rows matching E

gender	hours_worked	wealth	
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	v1:40.5+	poor	0.0421768
		rich	0.0116293
Male	v0:40.5-	poor	0.331313
		rich	0.0971295
	v1:40.5+	poor	0.134106
		rich	0.105933

P(Poor Male) = 0.4654

Using the

Joint

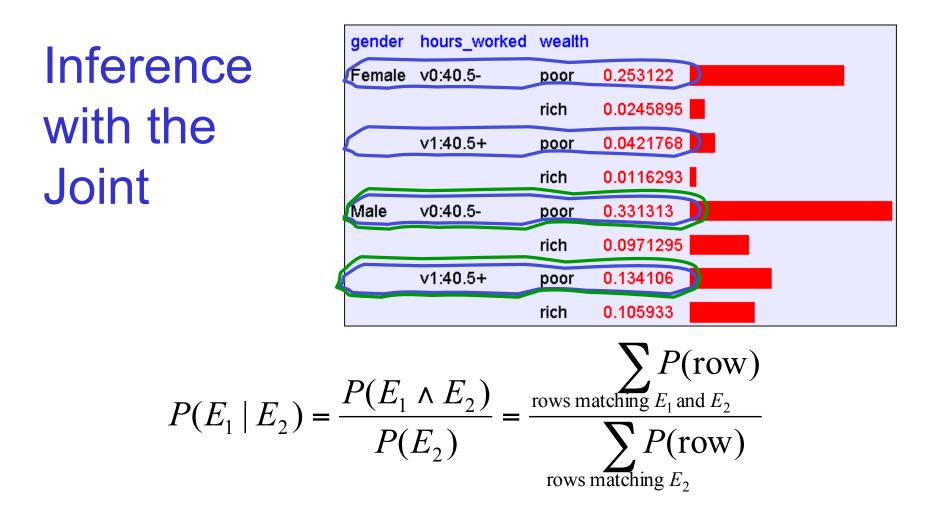
 $P(E) = \sum P(\text{row})$ rows matching E

gender	hours_worked	wealth	
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	v1:40.5+	poor	0.0421768
		rich	0.0116293
Male	v0:40.5-	poor	0.331313
		rich	0.0971295
	v1:40.5+	poor	0.134106
		rich	0.105933

Using the Joint

P(Poor) = 0.7604

 $P(E) = \sum P(\text{row})$ rows matching E



P(Male | Poor) = 0.4654 / 0.7604 = 0.612

Learning and the Joint Distribution

gender	hours_worked	wealth	1
Female	v0:40.5-	poor	0.253122
		rich	0.0245895
	v1:40.5+	poor	0.0421768
		rich	0.0116293
Male	v0:40.5-	poor	0.331313
		rich	0.0971295
	v1:40.5+	poor	0.134106
		rich	0.105933

Suppose we want to learn the function f: <G, H> \rightarrow W

```
Equivalently, P(W | G, H)
```

Solution: learn joint distribution from data, calculate P(W | G, H)

e.g., P(W=rich | G = female, H = 40.5-) =

sounds like the solution to learning h: $X \rightarrow Y$, or P(Y | X).

Are we done?

sounds like the solution to learning h: $X \rightarrow Y$, or P(Y | X). $2^{lo} = 1027$

Main problem: learning P(Y|X) can require more data than we have

consider learning Joint Dist. with 100 attributes # of rows in this table? $2'^{\circ\circ} \geq 10^{\circ\circ} = 10^{\circ\circ}$ # of people on earth? fraction of rows with 0 training examples? 0.7199

What to do?

- 1. Be smart about how we estimate probabilities from sparse data
 - maximum likelihood estimates
 - maximum a posteriori estimates
- 2. Be smart about how to represent joint distributions
 - Bayes networks, graphical models

1. Be smart about how we estimate probabilities

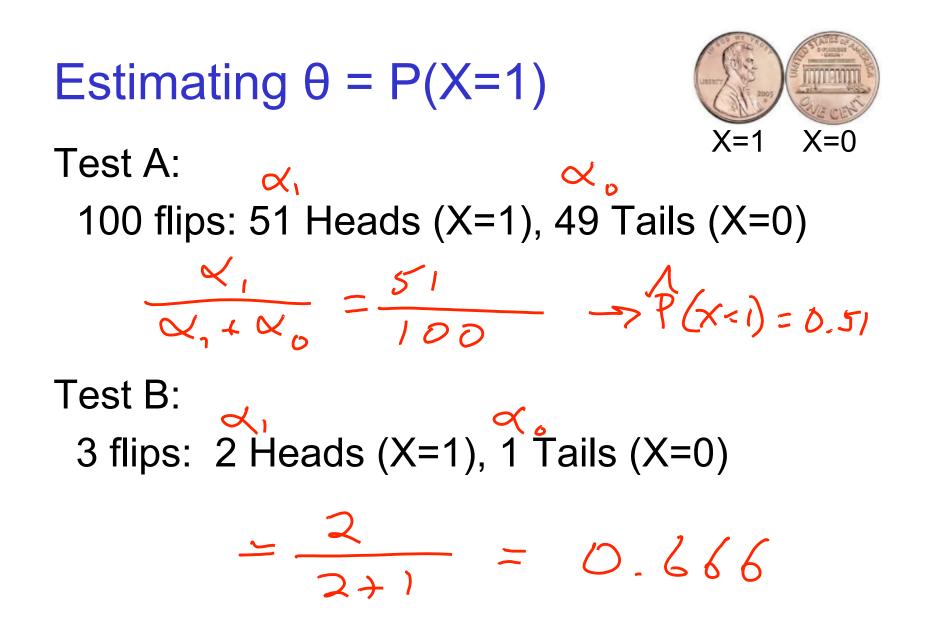
Estimating Probability of Heads

- I show you the above coin X, and hire you to estimate the probability that it will turn up heads (X = 1) or tails (X = 0)
- You flip it repeatedly, observing

- it turns up heads α_1 times

- it turns up tails α_0 times

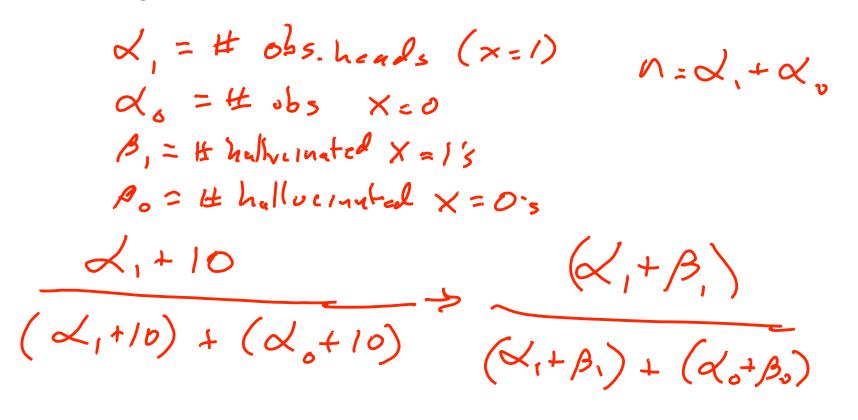
• Your estimate for P(X = 1) is....?



Estimating $\theta = P(X=1)$

Case C: (online learning)

 keep flipping, want single learning algorithm that gives reasonable estimate after each flip



Principles for Estimating Probabilities

Principle 1 (maximum likelihood):

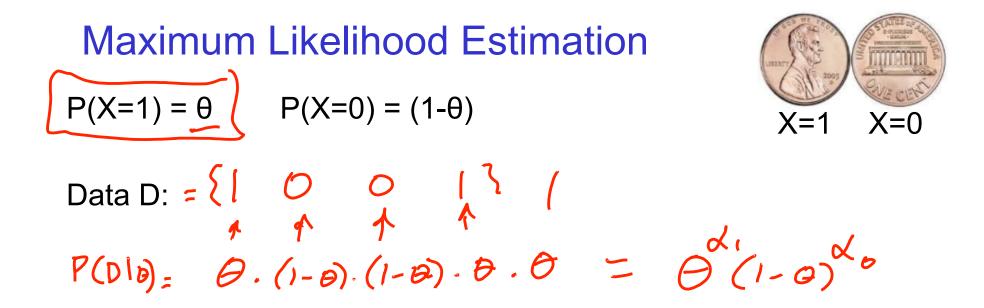
choose parameters θ that maximize P(data | θ)

• e.g.,
$$\hat{\theta}^{MLE} = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

Principle 2 (maximum a posteriori prob.):

- choose parameters θ that maximize P(θ | data)
- e.g.

$$\hat{\theta}^{MAP} = \frac{\alpha_1 + \#\text{hallucinated}_1\text{s}}{(\alpha_1 + \#\text{hallucinated}_1\text{s}) + (\alpha_0 + \#\text{hallucinated}_0\text{s})}$$



Flips produce data D with $lpha_1$ heads, $lpha_0$ tails

- flips are independent, identically distributed 1's and 0's (Bernoulli)
- α_1 and α_0 are counts that sum these outcomes (Binomial) $P(D|\theta) = P(\alpha_1, \alpha_0|\theta) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}$

Maximum Likelihood Estimate for Θ

Set derivative to zero:

$$\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = 0$$

[C. Guestrin]

$$\hat{\theta} = \arg \max_{\theta} \ln P(D|\theta) \quad \text{set derivative to zero:} \quad \frac{d}{d\theta} \ln P(D|\theta) = 0$$

$$= \arg \max_{\theta} \ln \left[\theta^{\alpha_1}(1-\theta)^{\alpha_0}\right] \quad \text{hint:} \quad \frac{\partial \ln \theta}{\partial \theta} = \frac{1}{\theta}$$

$$= \frac{\partial}{\partial \theta} \quad \forall, \ln \theta + \forall_{\theta} \ln \left(1-\theta\right) \quad \text{hint:} \quad \frac{\partial \ln \theta}{\partial \theta} = \frac{1}{\theta}$$

$$= \frac{\partial}{\partial \theta} \quad \forall, \ln \theta + \forall_{\theta} \ln \left(1-\theta\right) \quad \frac{\partial}{\partial \theta} \quad \frac{\partial}{\partial \theta$$

Summary: Maximum Likelihood Estimate

• Each flip yields boolean value for X

 $X \sim \text{Bernoulli:} P(X) = \theta^X (1-\theta)^{(1-X)}$

• Data set D of independent, identically distributed (iid) flips produces α_1 ones, α_0 zeros (Binomial)

 $P(D|\theta) = P(\alpha_1, \alpha_0|\theta) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}$

$$\hat{\theta}^{MLE} = \operatorname{argmax}_{\theta} P(D|\theta) = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

Principles for Estimating Probabilities

Principle 1 (maximum likelihood):

choose parameters θ that maximize
 P(data | θ)

Principle 2 (maximum a posteriori prob.): • choose parameters θ that maximize P(θ | data) = <u>P(data | θ) P(θ) P(data)</u>

Beta prior distribution – $P(\theta)$

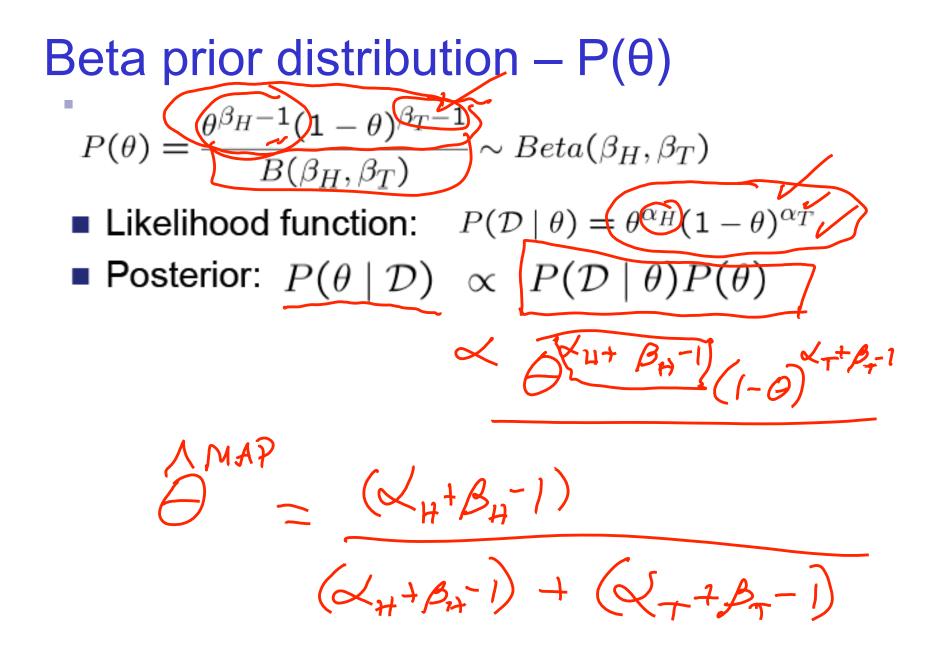
$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

• Likelihood function: $P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$

• Posterior: $\underline{P(\theta \mid \mathcal{D})} \propto$

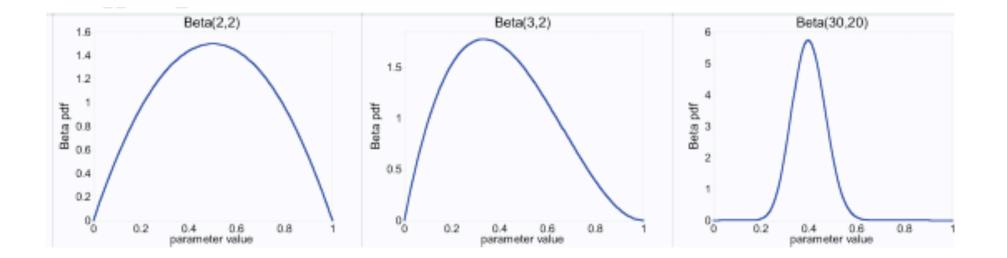
$$C = \theta^{-n} (1 - \theta)^{-n}$$

$$C = P(\mathcal{D} \mid \theta) P(\theta)$$

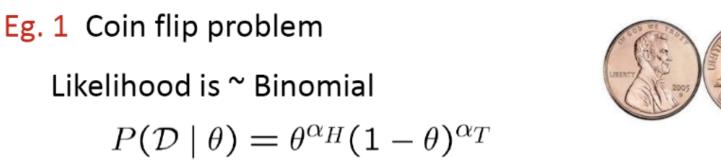


Beta prior distribution – P(
$$\theta$$
)

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$



[C. Guestrin]



If prior is Beta distribution,

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

Then posterior is Beta distribution

$$P(\theta|D) \sim Beta(\alpha_H + \beta_H, \alpha_H + \beta_H)$$

and MAP estimate is therefore

$$\hat{\theta}^{MAP} = \frac{\alpha_H + \beta_H - 1}{(\alpha_H + \beta_H - 1) + (\alpha_T + \beta_T - 1)}$$

Eg. 2 Dice roll problem (6 outcomes instead of 2)

Likelihood is ~ Multinomial($\theta = \{\theta_1, \theta_2, ..., \theta_k\}$)

 $P(\mathcal{D} \mid \theta) = \theta_1^{\alpha_1} \theta_2^{\alpha_2} \dots \theta_k^{\alpha_k}$

If prior is Dirichlet distribution,

$$P(\theta) = \frac{\theta_1^{\beta_1 - 1} \ \theta_2^{\beta_2 - 1} \dots \theta_k^{\beta_k - 1}}{B(\beta_1, \dots, \beta_k)} \sim \text{Dirichlet}(\beta_1, \dots, \beta_k)$$

Then posterior is Dirichlet distribution

$$P(\theta|D) \sim \text{Dirichlet}(\beta_1 + \alpha_1, \dots, \beta_k + \alpha_k)$$

and MAP estimate is therefore

$$\hat{\theta_i}^{MAP} = \frac{\alpha_i + \beta_i - 1}{\sum_{j=1}^k (\alpha_j + \beta_j - 1)}$$

MLE vs MAP

- Goal is same
 - Calculate posterior distribution
 - Probability of Data, P(y|X)
- MLE
 - Does not use prior
 - Starts with an assumption
- MAP
 - Uses Bayes Rule
 - Uses Prior
 - $P(y|X) \propto P(X|y)P(y)$

Some terminology

- Likelihood function: $P(data | \theta)$
- Prior: $P(\theta)$
- Posterior: $P(\theta \mid data)$
- Conjugate prior: P(θ) is the conjugate prior for likelihood function P(data | θ) if the forms of P(θ) and P(θ | data) are the same.

You should know

- Probability basics
 - random variables, conditional probs, ...
 - Bayes rule
 - Joint probability distributions
 - calculating probabilities from the joint distribution
- Estimating parameters from data
 - maximum likelihood estimates
 - maximum a posteriori estimates
 - distributions binomial, Beta, Dirichlet, ...
 - conjugate priors

Independent Events

- Definition: two events A and B are independent if P(A ^ B)=P(A)*P(B)
- Intuition: knowing A tells us nothing about the value of B (and vice versa)

Picture "A independent of B"

Expected values

Given a discrete random variable X, the expected value of X, written E[X] is

$$E[X] = \sum_{x \in \mathcal{X}} x P(X = x)$$

Example:	X	P(X)
	0	0.3
	1	0.2
	2	0.5

Given discrete random variable X, the expected value of X, written E[X] is

$$E[X] = \sum_{x \in \mathcal{X}} x P(X = x)$$

We also can talk about the expected value of functions of X

$$E[f(X)] = \sum_{x \in \mathcal{X}} f(x) P(X = x)$$

Covariance

Given two discrete r.v.'s X and Y, we define the covariance of X and Y as

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

- e.g., X=gender, Y=playsFootball
- or X=gender, Y=leftHanded

Remember:
$$E[X] = \sum_{x \in \mathcal{X}} xP(X = x)$$