CMSC 478

Lecture 4
KMA Solaiman

Supervised Learning:
Logistic Regression

Optimization Method Summary

Compute per Step Number of Steps

Method to convergence
SGD 6(d) ~ €2
Minibatch SGD
GD 6(nd) -l
Newton Q(nd?) ~log(1/€)

» In classical stats, d is small (< 100), n is often small, and
exact parameters matter

» In modern ML, d is huge (billions, trillions), n is huge
(trillions), and parameters used only for prediction

» These are approximate number of computing steps

» Convergence happens when loss settles to within an error range
around the final value.

» Newton would be very fast, where SGD needs a lot of step, but
individual steps are fast, makes up for it

» As a result, (minibatch) SGD is the workhorse of ML.

Linear

Classification

- O

© 00 N O o B~ W N

Y
o

x1
0.048589
0.200023
1.595538
1.315929
1.087080
0.512235
0.265039
1.606480
0.977585
1.908708
2.503476

X2
1120275
0.956716
1.023582
1.452371
1.513219
1.594651
1.008506
1.571889
1.5650227
1.121259
3.002576

x2

45 |

40 1

35 1

3.0 1

45 -

2.0 -

15 1

10 4

=
B
e
. *
..
1 2
x1

Perceptron Loss

0 ifysw-x>0
—y*W-X otherwise

Lp(y, w - x) ={

Loss

def perceptron(df, label = 'y', epochs = 100, bias = True):

if bias:
df = df.copy()
df.insert(@, ' x0 ', 1)

w = np.zeros(len(df.columns) - 1)
features = [column for column in df.columns if column != label]

for _ in range(epochs):

errors = 0

for _, row in df.iterrows():
row[features]
row[label]

f y % np.dot(w, x) <= 0:
W=WH+Y % X
errors += 1

yield w.copy()
if errors ==
break

X
y
i

0.0 - e e 00 0

000 025 050 075 100 125 150 175 200
petal width (cm)

Graph of Iris Dataset with logistic regression

Logistic Regression: Link Functions

Given a training set {(x(), y()) for i =1,...,n} let y() € {0,1}.
Want hg(x) € [0, 1]. Let's pick a smooth function:

ho(x) = g(0" x)

Here, g is a link function. There are many. ..

Logistic Regression: Link Functions

Given a training set {(x(), y()) for i =1,...,n} let y() € {0,1}.
Want hg(x) € [0, 1]. Let's pick a smooth function:

ho(x) = g(8" x)
Here, g is a link function. There are many. .. but we'll pick one!

1
14+ e 2

g(z) =

0:5

Why the exp function?

1 One reason: A linear function has a range from
[—00, oo] and we need to force it to be positive

and sum to 1 in order to be a probabillity:

X))

*
2
Q
x
o
+
—
=
x

exp(w *

Logistic Regression: Link Functions

Given a training set {(x(), y()) for i =1,...,n} let y() € {0,1}.
Want hg(x) € [0, 1]. Let’s pick a smooth function:

ho(x) = g(0" x)
Here, g is a link function. There are many. .. but we'll pick one!

1

: SIGMOID
1+ e 2

g(z) =

How do we interpret hg(x)?

Ply =11x;0) = hy(x)
Ply=0]x;0) =1— hy(x)

0:5

Logistic Regression: Link Functions

Let's write the Likelihood function. Recall:

P(y =1 x;0) =hy(x)
P(y =0 x;0) =1 — hy(x)

Then,

L) =P(y | X;0) = | [p(y'") | x17); 6)
=1

Logistic Regression: Link Functions

Let's write the Likelihood function. Recall:

P(y =1 x;0) =hy(x)
P(y =0 x;0) =1 — hy(x)

Then,

L) =P(y | X;0) =] [(' | x'7;6)
=1

Conditional Distribution P(y | X)

Logistic Regression: Link Functions

Let's write the Likelihood function. Recall:

P(y = 1| x;6) =ha(x)
P(y =01 x;60) =1 — hy(x)

Then,
L(0) =P(y | X;0) = Hp (1 x;0)

How do we go to something similar to a cost function
fromP (yl X; 0)?

- Maximum Likelihood Estimation (MLE)

Logistic Regression: Link Functions

Let's write the Likelihood function. Recall:

P(y = 1| x;0) =hy(x)
P(y =0]x;0) =1— hy(x)

Then,
L(0) =P(y | X;0) =][p(y\" | x1); 6)
=1

— H hg(x(i))y(i)(l — hg(x(")))l_y(i) exponents encode “if-then”
i=1

Logistic Regression: Link Functions

Let's write the Likelihood function. Recall:

P(y = 1| x;0) =hy(x)
P(y =0 x;0) =1 — hy(x)

Then,
L) =P(y | X;0) = | [p(y'") | x17); 6)
i=1
— H hg(x(i))y(i)(l — hg(x(i)))l_y(i) exponents encode “if-then”
i=1

Taking logs to compute the log likelihood ¢(8) we have:

(0) = log L(0) = zn:y(") log ho(x\) + (1 — ¥\ log(1 — he(x("))
=1

Now to solve it. ..

(0) = log L(0) = Zn:y(") log ho(x\7) + (1 — y 1)) log(1 — he(x()))
=1

We maximize for 6 but we already saw how to do this! Just
compute derivative, run (S)GD and you're done with it!

DA

Time Permitting: There is magic in the derivative. ..

Even more, the batch update can be written in a remarkably
familiar form:

o(t+1) — g(t) Z(y(j) — hy(xU))x).
JjeB

We sketch why (you can check!) We drop superscripts to simplify
notation and examine a single data point:

y log hp(x) + (1 — y) log(1 — ho(x))
=~ ylog(L+e ")+ (1= y)(=07x) = (1~ y)log(1 + ')
= —log(1+e ") — (1—y)(07x)

T
e—9 X

We used 1 — hy(x) =
this expression wrt 6 and get:

P We now compute the derivative of
—e X

—0Tx

T (L yx = (= A

Batch Gradient Ascent for Logistic Regression

Given: training examples (x%¢), ¢ =1...N
Let0=(0,0,0,0,.. . , O) be the initial weight vector.
Repeat until convergence
Let V=(0,0,.. . ,0) bethe gradient vector.
For:=1 toNdo

p' = 1/(1+ exp[-6 -x])
errort = yt — pt
Forj =1 toddo
Vi=V,+ errort - &'
0: =0+ a-V step in direction of increasing gradient

1 An online gradient ascent algorithm can be constructed, of course

1 Most statistical packages use a second-order (Newton-Raphson)
algorithm for faster convergence. Each iteration of the second-order
method can be viewed as a weighted least squares computation, so

the algorithm is known as Iteratively-Reweighted Least Squares
(IRLS)

Perceptron Learning Algorithm

* Modify link function to output either O or 1.
* Make g to be a threshold function
* Then use same hy(x) = g(6'x) using this g

* Follow the same update rule for 6

(2) = 1 ifz2>0
=10 ifz<0

Logistic Regression Implements a
Linear Discriminant Function

1 In the 2-class 0/1 loss function case, we should
predicty = 1 if

Ey\X[L(an)] Ey|X[L(17y)]
> P(y|x)L(0,y) > P(ylx)L(1,y)
Yy Yy

P(y = 0[x)L(0,0) + P(y = 1x)L(0,1) > P(y=O)L(1,0)+ P(y = 1|x)L(1,1)
P(y = 1|x) P(y = 0[x)
igz ~ 313 1 if Py=0|X)#0
P(y = 1|x)
99 Py = Olx) ;

0

1 A similar derivation can be done for arbitrary
L(0,1) and L(1,0).

Extending LR to K>2 classes

x1 4
o)
o)
)
o)
o)
0 ®
0
®@ o ©
®® o
o)
o)
o)
@ o
o)
® o
e o

X2

1 vs All

Red class vs green and blue

Green class vs red and blue

Blue class vs red and green

6 6
. .
5 5 -
. °e a °e
. .
4. L] ® e 4 L] ® e
. .
34 ° 3)
L 4 4
24 24
L] Y L J
.
1 1
° .
0 . 0 i
-1 1 o -11]
35 3 e N

A Quick and Dirty Intro to Multiclass Classification.
This technique is the daily workhorse of modern Al/ML

Multiclass

Suppose we want to choose among k discrete values, e.g.,
{"Cat’,'Dog’, 'Car’,'Bus'} so k = 4.

We encode with one-hot vectors i.e. y € {0,1}* and Zjlleyj = 1.

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 1
‘Cat’ 'Dog’ ‘Car’ ‘Bus’

A prediction here is actually a distribution over the k classes. This

leads to the SOFTMAX function described below (derivation in the

notes!). That is our hypothesis is a vector of k values:

- exp(6] x)

Ply =jlxi0) = 07—
2_i—1exp(0; x)

Here each 6, has the same dimension as x, i.e., x,0; € RI*+1 for

j=1,... k.

Extending Logistic Regression to K > 2 classes

i Choose class K to be the “reference class” and
represent each of the other classes as a logistic
function of the odds of class k versus class K:

Ply=11x) _

P(y = K|x)

P(y = 2|x)
P(y = K[x)

log

log

Py =K —1|x)

log
P(y = Kx)

= WK-1-X

I Gradient ascent can be applied to
simultaneously train all of these weight vectors
Wi

Summary of Introduction to Classification

» We used the principle of maximum likelihood (and a
probabilistic model) to extend to classification.

Deriving a Learning Algorithm

1 Since we are fitting a conditional probability distribution, we no
longer seek to minimize the loss on the training data. Instead, we
seek to find the probability distribution h that is most likely given the
training data

1 Let S be the training sample. Our goal is to find h to maximize P(h |

S):
P(S|h)P(h
argmax P(h|S) = argmax Sy by Bayes' Rule
h h P(S)

= argmax P(S|h)P(h) because P(S) doesn’'t depend on h
h

= argmax P(S|h) if we assume P(h) = unifom
h

= argmax log P(S|h) because log is monotonic
h

The distribution P(S|h) is called the likelihood function. The log
likelihood is frequently used as the objective function for learning. Itis
often written as {(w).

The h that maximizes the likelihood on the training data is called the
maximum likelihood estimator (MLE) g

Summary of Introduction to Classification

» We used the principle of maximum likelihood (and a
probabilistic model) to extend to classification.

» \We developed logistic regression from this principle.
» Logistic regression is widely used today.

Summary of Introduction to Classification

» We used the principle of maximum likelihood (and a
probabilistic model) to extend to classification.

» \We developed logistic regression from this principle.
» Logistic regression is widely used today.

» We noticed a familiar pattern: take derivatives of the

likelihood, and the derivatives had this (hopefully) intuitive
“misprediction form”

Computing the Likelihood

1 In our framework, we assume that each training
example (x;y;) is drawn from the same (but
unknown) probability distribution P(x,y). This
means that the log likelihood of S is the sum of
the log likelihoods of the individual training
examples:

log P(S|h) = IogH P(xt, y¥|h)

(2

2_log P(x!,yh)
1

Computing the Likelihood (2)

1 Recall that any joint distribution P(a,b) can be
factored as P(alb) P(b). Hence, we can write

argmaxlogP(S|h) = argmaleogp(xzawh)
h h -

— argmaxz |ng(yi|xiah)P(Xi|h)
h i

1 In our case, P(x | h) = P(x), because it does not
depend on h, so

argmax log P(S|h) argmax 3" 109 P (y'|x", h) P(x'|h)
h ho 5

argmax 3" 109 P (y'[x", h)
h i

Classification Lecture Summary

» \We saw the differences between classification and regression.

» \We learned about a principle for probabilistic interpretation for
linear regression and classification: Maximum Likelihood.

» We used this to derive logistic regression.
» The Maximum Likelihood principle will be used again next
lecture (and in the future)

