CMSC 478 Lecture 4 KMA Solaiman

Supervised Learning: Logistic Regression

Some slides are slightly adapted from Chris Re, Stanford ML

Optimization Method Summary

	Compute per Step	Number of Steps
Method		to convergence
SGD	$\theta(d)$	≈ € ⁻²
Minibatch SGD		
GD	$\theta(nd)$	≈ ε -1
Newton	$\Omega(\mathrm{nd}^2)$	≈ log(1/€)

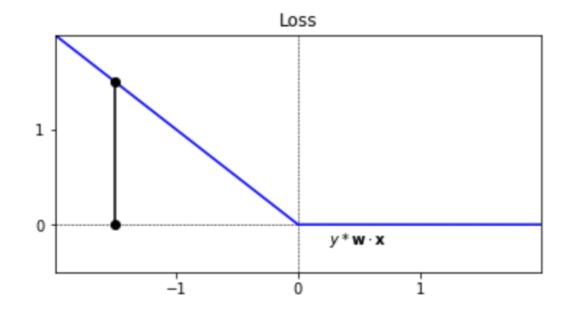
- In classical stats, d is small (< 100), n is often small, and exact parameters matter
- In modern ML, d is huge (billions, trillions), n is huge (trillions), and parameters used only for prediction
 - ➤ These are approximate number of computing steps
 - Convergence happens when loss settles to within an error range around the final value.
 - Newton would be very fast, where SGD needs a lot of step, but individual steps are fast, makes up for it
- ► As a result, (minibatch) SGD is the workhorse of ML.

Linear Classification

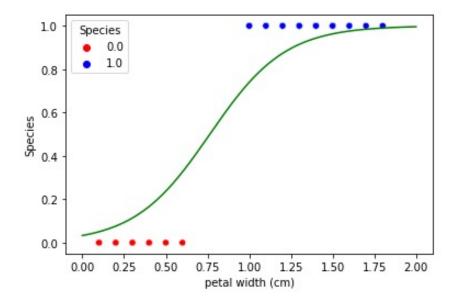
				_
	x1	x2	у	
0	0.048589	1.120275	-1	4.5 -
1	0.200023	0.956716	-1	4.0 -
2	1.595538	1.023582	-1	3.5 -
3	1.315929	1.452371	-1	3.0 -
4	1.087080	1.513219	-1	∑ 2.5 -
5	0.512235	1.594651	-1	
6	0.265039	1.008506	-1	2.0 -
7	1.606480	1.571889	-1	1.5 -
8	0.977585	1.550227	-1	1.0 -
9	1.908708	1.121259	-1	
10	2.503476	3.002576	1	

Perceptron Loss

$$L_P(y, \mathbf{w} \cdot \mathbf{x}) = egin{cases} 0 & ext{if } y * \mathbf{w} \cdot \mathbf{x} > 0 \ -y * \mathbf{w} \cdot \mathbf{x} & ext{otherwise} \end{cases}$$



```
def perceptron(df, label = 'y', epochs = 100, bias = True):
    if bias:
        df = df.copy()
        df.insert(0, '_x0_', 1)
    w = np.zeros(len(df.columns) - 1)
    features = [column for column in df.columns if column != label]
    for _ in range(epochs):
        errors = 0
        for _, row in df.iterrows():
            x = row[features]
            y = row[label]
            if y * np.dot(w, x) <= 0:
                W = W + Y * X
                errors += 1
            yield w.copy()
        if errors == 0:
            break
```



Graph of Iris Dataset with logistic regression

Given a training set $\{(x^{(i)}, y^{(i)}) \text{ for } i = 1, ..., n\}$ let $y^{(i)} \in \{0, 1\}$. Want $h_{\theta}(x) \in [0, 1]$. Let's pick a smooth function:

$$h_{\theta}(x) = g(\theta^T x)$$

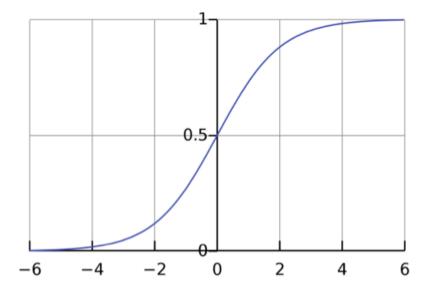
Here, g is a link function. There are many...

Given a training set $\{(x^{(i)}, y^{(i)}) \text{ for } i = 1, ..., n\}$ let $y^{(i)} \in \{0, 1\}$. Want $h_{\theta}(x) \in [0, 1]$. Let's pick a smooth function:

$$h_{\theta}(x) = g(\theta^T x)$$

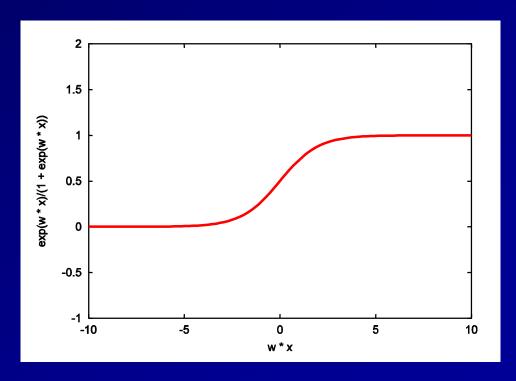
Here, g is a link function. There are many...but we'll pick one!

$$g(z)=\frac{1}{1+e^{-z}}.$$



Why the exp function?

One reason: A linear function has a range from $[-\infty, \infty]$ and we need to force it to be positive and sum to 1 in order to be a probability:

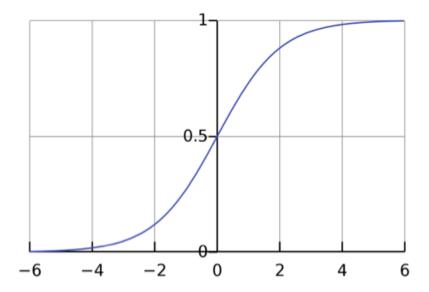


Given a training set $\{(x^{(i)}, y^{(i)}) \text{ for } i = 1, ..., n\}$ let $y^{(i)} \in \{0, 1\}$. Want $h_{\theta}(x) \in [0, 1]$. Let's pick a smooth function:

$$h_{\theta}(x) = g(\theta^T x)$$

Here, g is a link function. There are many...but we'll pick one!

$$g(z) = \frac{1}{1 + e^{-z}}$$
. SIGMOID



How do we interpret $h_{\theta}(x)$?

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

 $P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$

Let's write the Likelihood function. Recall:

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

 $P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$

Then,

$$L(\theta) = P(y \mid X; \theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \theta)$$

Let's write the Likelihood function. Recall:

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

 $P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$

Then,

$$L(\theta) = P(y \mid X; \theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \theta)$$

Conditional Distribution P(y | X)

Let's write the Likelihood function. Recall:

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

$$P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$$

Then,

$$L(\theta) = P(y \mid X; \theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \theta)$$

How do we go to something similar to a cost function from P (y I X; θ) ?

- Maximum Likelihood Estimation (MLE)

Let's write the Likelihood function. Recall:

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

 $P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$

Then,

$$L(\theta) = P(y \mid X; \theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \theta)$$

$$= \prod_{i=1}^{n} h_{\theta}(x^{(i)})^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1 - y^{(i)}} \quad \text{exponents encode "if-then"}$$

Let's write the Likelihood function. Recall:

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

 $P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$

Then,

$$L(\theta) = P(y \mid X; \theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \theta)$$

$$= \prod_{i=1}^{n} h_{\theta}(x^{(i)})^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1 - y^{(i)}} \quad \text{exponents encode "if-then"}$$

Taking logs to compute the log likelihood $\ell(\theta)$ we have:

$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^{n} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

Now to solve it...

$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^{n} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

We maximize for θ but we already saw how to do this! Just compute derivative, run (S)GD and you're done with it!

Takeaway: This is *another* example of the max likelihood method: we setup the likelihood, take logs, and compute derivatives.

Time Permitting: There is magic in the derivative...

Even more, the batch update can be written in a *remarkably* familiar form:

$$\theta^{(t+1)} = \theta^{(t)} + \sum_{j \in B} (y^{(j)} - h_{\theta}(x^{(j)})) x^{(j)}.$$

We sketch why (you can check!) We drop superscripts to simplify notation and examine a single data point:

$$y \log h_{ heta}(x) + (1 - y) \log(1 - h_{ heta}(x))$$

$$= -y \log(1 + e^{-\theta^T x}) + (1 - y)(-\theta^T x) - (1 - y) \log(1 + e^{-\theta^T x})$$

$$= -\log(1 + e^{-\theta^T x}) - (1 - y)(\theta^T x)$$

We used $1 - h_{\theta}(x) = \frac{e^{-\theta^T x}}{1 - e^{-\theta^T x}}$. We now compute the derivative of this expression wrt θ and get:

$$\frac{e^{-\theta^T x}}{1 + e^{-\theta^T x}} x - (1 - y) x = (y - h_{\theta}(x)) x$$

Batch Gradient Ascent for Logistic Regression

```
Given: training examples (\mathbf{x}^i, y^i), i = 1 \dots N

Let \theta = (0, 0, 0, 0, \dots, 0) be the initial weight vector.

Repeat until convergence

Let \nabla = (0, 0, \dots, 0) be the gradient vector.

For i = 1 to N do

p^i = 1/(1 + \exp[-\theta \cdot \mathbf{x}^i])
\operatorname{error}^i = y^i - p^i
For j = 1 to d do

\nabla_j = \nabla_j + \operatorname{error}^i \cdot x^i j
\theta \colon = \theta + \alpha \cdot \nabla step in direction of increasing gradient
```

- An online gradient ascent algorithm can be constructed, of course
- Most statistical packages use a second-order (Newton-Raphson) algorithm for faster convergence. Each iteration of the second-order method can be viewed as a weighted least squares computation, so the algorithm is known as Iteratively-Reweighted Least Squares (IRLS)

Perceptron Learning Algorithm

- Modify link function to output either 0 or 1.
- Make g to be a threshold function
- Then use same $h_{\theta}(x) = g(\theta^T x)$ using this g
- ullet Follow the same update rule for heta

$$g(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}$$

Logistic Regression Implements a Linear Discriminant Function

■ In the 2-class 0/1 loss function case, we should predict ŷ = 1 if

$$E_{y|\mathbf{x}}[L(0,y)] > E_{y|\mathbf{x}}[L(1,y)]$$

$$\sum_{y} P(y|\mathbf{x})L(0,y) > \sum_{y} P(y|\mathbf{x})L(1,y)$$

$$P(y = 0|\mathbf{x})L(0,0) + P(y = 1|\mathbf{x})L(0,1) > P(y = 0|\mathbf{x})L(1,0) + P(y = 1|\mathbf{x})L(1,1)$$

$$P(y = 1|\mathbf{x}) > P(y = 0|\mathbf{x})$$

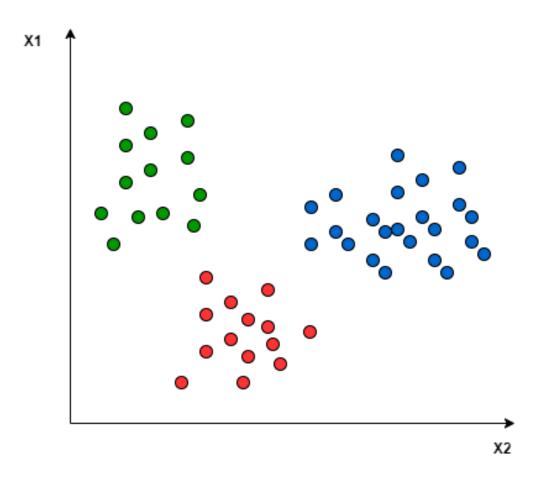
$$\frac{P(y = 1|\mathbf{x})}{P(y = 0|\mathbf{x})} > 1 \quad \text{if } P(y = 0|X) \neq 0$$

$$\log \frac{P(y = 1|\mathbf{x})}{P(y = 0|\mathbf{x})} > 0$$

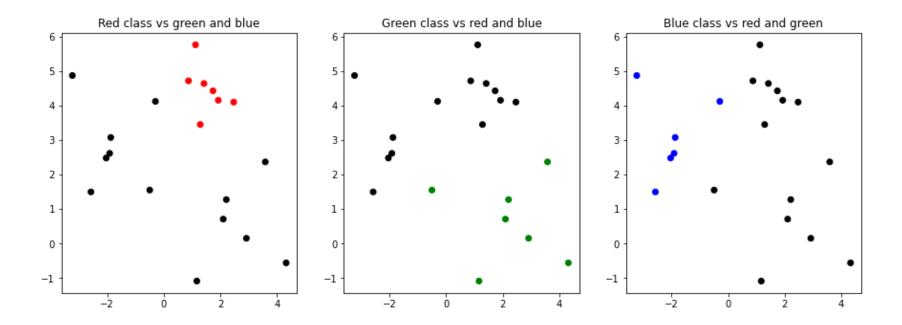
$$\mathbf{w} \cdot \mathbf{x} > 0$$

A similar derivation can be done for arbitrary L(0,1) and L(1,0).

Extending LR to K>2 classes



1 vs All



A Quick and Dirty Intro to Multiclass Classification. This technique is the daily workhorse of modern AI/ML

Multiclass

Suppose we want to choose among k discrete values, e.g., {'Cat', 'Dog', 'Car', 'Bus'} so k = 4.

We encode with **one-hot** vectors i.e. $y \in \{0,1\}^k$ and $\sum_{j=1}^k y_j = 1$.

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$
'Cat' 'Dog' 'Car' 'Bus'

A prediction here is actually a *distribution* over the k classes. This leads to the SOFTMAX function described below (derivation in the notes!). That is our hypothesis is a vector of k values:

$$P(y = j | x; \bar{\theta}) = \frac{\exp(\theta_j^T x)}{\sum_{i=1}^k \exp(\theta_i^T x)}.$$

Here each θ_j has the same dimension as x, i.e., $x, \theta_j \in R^{d+1}$ for $j=1,\ldots,k$.

Extending Logistic Regression to K > 2 classes

Choose class K to be the "reference class" and represent each of the other classes as a logistic function of the odds of class k versus class K:

$$\log \frac{P(y=1|\mathbf{x})}{P(y=K|\mathbf{x})} = \mathbf{w}_1 \cdot \mathbf{x}$$

$$\log \frac{P(y=2|\mathbf{x})}{P(y=K|\mathbf{x})} = \mathbf{w}_2 \cdot \mathbf{x}$$

$$\vdots$$

$$\log \frac{P(y=K-1|\mathbf{x})}{P(y=K|\mathbf{x})} = \mathbf{w}_{K-1} \cdot \mathbf{x}$$

 Gradient ascent can be applied to simultaneously train all of these weight vectors
 w_k

Summary of Introduction to Classification

► We used the principle of maximum likelihood (and a probabilistic model) to extend to classification.

Deriving a Learning Algorithm

- Since we are fitting a conditional probability distribution, we no longer seek to minimize the loss on the training data. Instead, we seek to find the probability distribution *h* that is most likely given the training data
- Let S be the training sample. Our goal is to find h to maximize P(h | S):

$$\begin{array}{lll} \operatorname{argmax} P(h|S) &=& \operatorname{argmax} \frac{P(S|h)P(h)}{P(S)} & \text{by Bayes' Rule} \\ &=& \operatorname{argmax} P(S|h)P(h) & \text{because } P(S) \text{ doesn't depend on } h \\ &=& \operatorname{argmax} P(S|h) & \text{if we assume } P(h) = \operatorname{uniform} \\ &=& \operatorname{argmax} \log P(S|h) & \text{because log is monotonic} \end{array}$$

The distribution P(S|h) is called the <u>likelihood function</u>. The log likelihood is frequently used as the objective function for learning. It is often written as $\ell(\mathbf{w})$.

The *h* that maximizes the likelihood on the training data is called the maximum likelihood estimator (MLE)

Summary of Introduction to Classification

- ► We used the principle of maximum likelihood (and a probabilistic model) to extend to classification.
- We developed logistic regression from this principle.
 - Logistic regression is widely used today.

Summary of Introduction to Classification

- ► We used the principle of maximum likelihood (and a probabilistic model) to extend to classification.
- We developed logistic regression from this principle.
 - Logistic regression is widely used today.
- ➤ We noticed a familiar pattern: take derivatives of the likelihood, and the derivatives had this (hopefully) intuitive "misprediction form"

Computing the Likelihood

■ In our framework, we assume that each training example (x_i,y_i) is drawn from the same (but unknown) probability distribution P(x,y). This means that the log likelihood of S is the sum of the log likelihoods of the individual training examples:

$$\log P(S|h) = \log \prod_{i} P(\mathbf{x}^{i}, y^{i}|h)$$
$$= \sum_{i} \log P(\mathbf{x}^{i}, y^{i}|h)$$

Computing the Likelihood (2)

■ Recall that *any* joint distribution P(a,b) can be factored as P(a|b) P(b). Hence, we can write

$$\underset{h}{\operatorname{argmax}} \log P(S|h) = \underset{h}{\operatorname{argmax}} \sum_{i} \log P(\mathbf{x}^{i}, y^{i}|h)$$
$$= \underset{h}{\operatorname{argmax}} \sum_{i} \log P(y^{i}|\mathbf{x}^{i}, h) P(\mathbf{x}^{i}|h)$$

In our case, P(x | h) = P(x), because it does not depend on h, so

$$\underset{h}{\operatorname{argmax}} \log P(S|h) = \underset{h}{\operatorname{argmax}} \sum_{i} \frac{\log P(y^{i}|\mathbf{x}^{i},h)P(\mathbf{x}^{i}|h)}{= \underset{h}{\operatorname{argmax}} \sum_{i} \log P(y^{i}|\mathbf{x}^{i},h)}$$

Classification Lecture Summary

- We saw the differences between classification and regression.
- ► We learned about a principle for probabilistic interpretation for linear regression and classification: **Maximum Likelihood**.
 - We used this to derive logistic regression.
 - ► The Maximum Likelihood principle will be used again next lecture (and in the future)