
CMSC 478
Lecture 4

KMA Solaiman

Supervised Learning:
Logistic Regression

Some slides are slightly adapted from Chris Re, Stanford ML

Optimization Method Summary

Method

Compute per Step Number of Steps
 to convergence

SGD
Minibatch SGD

GD
Newton

I In classical stats, d is small (< 100), n is often small, and
exact parameters matter

I In modern ML, d is huge (billions, trillions), n is huge
(trillions), and parameters used only for prediction
 5Iese are approYimate numCer oG computing steps
 Convergence Iappens XIen loss settles to XitIin an error range

around tIe Ginal value�
 /eXton Xould Ce verZ Gast
 XIere S(D needs a lot oG step
 Cut

individual steps are Gast
 maLes up Gor it

I As a result, (minibatch) SGD is the workhorse of ML.

ȵ log	��ϵ

ȵ ϵ ��

ȵ ϵ ��

Ϧ	d

Ϧ	nd

͙	nd�

Mobile User

Linear
Classification

Mobile User

Perceptron Loss

Mobile User

Mobile User

Logistic Regression: Link Functions

Given a training set {(x (i), y (i)) for i = 1, . . . , n} let y (i) 2 {0, 1}.
Want h✓(x) 2 [0, 1]. Let’s pick a smooth function:

h✓(x) = g(✓T x)

Here, g is a link function. There are many. . .

but we’ll pick one!

g(z) =
1

1 + e�z
.

How do we interpret h✓(x)?

P(y = 1 | x ; ✓) = h✓(x)

P(y = 0 | x ; ✓) = 1� h✓(x)

Mobile User

Logistic Regression: Link Functions

Given a training set {(x (i), y (i)) for i = 1, . . . , n} let y (i) 2 {0, 1}.
Want h✓(x) 2 [0, 1]. Let’s pick a smooth function:

h✓(x) = g(✓T x)

Here, g is a link function. There are many. . . but we’ll pick one!

g(z) =
1

1 + e�z
.

How do we interpret h✓(x)?

P(y = 1 | x ; ✓) = h✓(x)

P(y = 0 | x ; ✓) = 1� h✓(x)

Mobile User

4545

Why the exp function?Why the exp function?

One reason: A linear function has a range from One reason: A linear function has a range from
[[@@��, , ��] and we need to force it to be positive] and we need to force it to be positive
and sum to 1 in order to be a probability:and sum to 1 in order to be a probability:

Logistic Regression: Link Functions

Given a training set {(x (i), y (i)) for i = 1, . . . , n} let y (i) 2 {0, 1}.
Want h✓(x) 2 [0, 1]. Let’s pick a smooth function:

h✓(x) = g(✓T x)

Here, g is a link function. There are many. . . but we’ll pick one!

g(z) =
1

1 + e�z
.

How do we interpret h✓(x)?

P(y = 1 | x ; ✓) = h✓(x)

P(y = 0 | x ; ✓) = 1� h✓(x)

SIGMOID

Logistic Regression: Link Functions

Let’s write the Likelihood function. Recall:

P(y = 1 | x ; ✓) =h✓(x)

P(y = 0 | x ; ✓) =1� h✓(x)

Then,

L(✓) =P(y | X ; ✓) =
nY

i=1

p(y (i) | x (i); ✓)

=
nY

i=1

h✓(x
(i))y

(i)
(1 h✓(x

(i)))1 y (i)
exponents encode “if-then”

Taking logs to compute the log likelihood `(✓) we have:

`(✓) = log L(✓) =
nX

i=1

y
(i) log h✓(x

(i)) + (1 y
(i)) log(1 h✓(x

(i)))

Mobile User

Logistic Regression: Link Functions

Let’s write the Likelihood function. Recall:

P(y = 1 | x ; ✓) =h✓(x)

P(y = 0 | x ; ✓) =1� h✓(x)

Then,

L(✓) =P(y | X ; ✓) =
nY

i=1

p(y (i) | x (i); ✓)

=
nY

i=1

h✓(x
(i))y

(i)
(1 h✓(x

(i)))1 y (i)
exponents encode “if-then”

Taking logs to compute the log likelihood `(✓) we have:

`(✓) = log L(✓) =
nX

i=1

y
(i) log h✓(x

(i)) + (1 y
(i)) log(1 h✓(x

(i)))

Conditional DistriCution P	Z] 9

Logistic Regression: Link Functions

Let’s write the Likelihood function. Recall:

P(y = 1 | x ; ✓) =h✓(x)

P(y = 0 | x ; ✓) =1� h✓(x)

Then,

L(✓) =P(y | X ; ✓) =
nY

i=1

p(y (i) | x (i); ✓)

How do we go to sometKing simiOar to a cost function
from P (y | X; θ) ?

� 0D[imXm /iNeliKood (sWimDWioQ �0/(�

Mobile User

Logistic Regression: Link Functions

Let’s write the Likelihood function. Recall:

P(y = 1 | x ; ✓) =h✓(x)

P(y = 0 | x ; ✓) =1� h✓(x)

Then,

L(✓) =P(y | X ; ✓) =
nY

i=1

p(y (i) | x (i); ✓)

=
nY

i=1

h✓(x
(i))y

(i)
(1� h✓(x

(i)))1�y (i)
exponents encode “if-then”

Taking logs to compute the log likelihood `(✓) we have:

`(✓) = log L(✓) =
nX

i=1

y
(i) log h✓(x

(i)) + (1� y
(i)) log(1� h✓(x

(i)))

Mobile User

Logistic Regression: Link Functions

Let’s write the Likelihood function. Recall:

P(y = 1 | x ; ✓) =h✓(x)

P(y = 0 | x ; ✓) =1� h✓(x)

Then,

L(✓) =P(y | X ; ✓) =
nY

i=1

p(y (i) | x (i); ✓)

=
nY

i=1

h✓(x
(i))y

(i)
(1� h✓(x

(i)))1�y (i)
exponents encode “if-then”

Taking logs to compute the log likelihood `(✓) we have:

`(✓) = log L(✓) =
nX

i=1

y
(i) log h✓(x

(i)) + (1� y
(i)) log(1� h✓(x

(i)))

Mobile User

Now to solve it. . .

`(✓) = log L(✓) =
nX

i=1

y
(i) log h✓(x

(i)) + (1� y
(i)) log(1� h✓(x

(i)))

We maximize for ✓ but we already saw how to do this! Just
compute derivative, run (S)GD and you’re done with it!

Takeaway: This is another example of the max likelihood
method: we setup the likelihood, take logs, and compute
derivatives.

Mobile User

Time Permitting: There is magic in the derivative. . .

Even more, the batch update can be written in a remarkably

familiar form:

✓(t+1) = ✓(t) +
X

j2B
(y (j) � h✓(x

(j)))x (j).

We sketch why (you can check!) We drop superscripts to simplify
notation and examine a single data point:

y log h✓(x) + (1� y) log(1� h✓(x))

=� y log(1 + e
�✓T x) + (1� y)(�✓T x)� (1� y) log(1 + e

�✓T x)

=� log(1 + e
�✓T x)� (1� y)(✓T x)

We used 1� h✓(x) =
e�✓T x

1�e�✓T x
. We now compute the derivative of

this expression wrt ✓ and get:

e
�✓T x

1 + e�✓T x
x � (1� y)x = (y � h✓(x))x

Mobile User

5353

Batch Gradient Ascent for Logistic RegressionBatch Gradient Ascent for Logistic Regression

An online gradient ascent algorithm can be constructed, of coursAn online gradient ascent algorithm can be constructed, of coursee
Most statistical packages use a secondMost statistical packages use a second--order (Newtonorder (Newton--Raphson) Raphson)
algorithm for faster convergence. Each iteration of the secondalgorithm for faster convergence. Each iteration of the second--order order
method can be viewed as a weighted least squares computation, somethod can be viewed as a weighted least squares computation, so
the algorithm is known as Iterativelythe algorithm is known as Iteratively--Reweighted Least Squares Reweighted Least Squares
(IRLS)(IRLS)

�
����)'�!$!$� �-�#&"�(�xi, yi�� i � 	 . . .N

��� Ϧ ���, � , � , � , . . . , �� Ce tIe initial XeigIt vector�
 ������ *$)!" �%$+�'��$��

��� ∇ � ��, � , . . . ,�� Ce tIe gradient vector�
��� i � 	 �� N
�

pi � 	/�	 � �-&��w · xi��
�''%'i � yi � pi
��� j � 	 �� d
�

∇j � ∇j � �''%'i · xij
Ϧ � � Ϧ � ϟ r∇ ()�& !$ �!'��)!%$ %� !$�'��(!$� �'��!�$)

Mobile User

Perceptron Learning Algorithm

• Modify link function to output either 0 or 1.
• Make g to be a threshold function
• Then use same ℎ$ + = -(/%+) using this g
• Follow the same update rule for /

Mobile User

5454

Logistic Regression Implements a Logistic Regression Implements a
Linear Discriminant FunctionLinear Discriminant Function

In the 2In the 2--class 0/1 loss function case, we should class 0/1 loss function case, we should
predict predict �� = 1 if= 1 if

Ey|x�L��, y�� > Ey|x�L�	, y��X

y
P�y|x�L��, y� >

X

y
P�y|x�L�	, y�

P �y � �|x�L��,��� P�y � 	|x�L��,	� > P�y � �|x�L�	,��� P�y � 	|x�L�	, 	�
P�y � 	|x� > P �y � �|x�
P�y� 	|x�
P�y� �|x�

> 	 !� P�y � �|X� 6� �

"%�
P�y� 	|x�
P�y� �|x�

> �

w · x > �

A similar derivation can be done for arbitrary A similar derivation can be done for arbitrary
L(0,1) and L(1,0).L(0,1) and L(1,0).

&Ytending LR to K�� classes

Mobile User

1 vs All

Mobile User

A Quick and Dirty Intro to Multiclass Classification.
This technique is the daily workhorse of modern AI/ML

Multiclass
Suppose we want to choose among k discrete values, e.g.,
{’Cat’, ’Dog’, ’Car’, ’Bus’} so k = 4.

We encode with one-hot vectors i.e. y 2 {0, 1}k and
Pk

j=1 yj = 1.
0

BB@

1
0
0
0

1

CCA

0

BB@

0
1
0
0

1

CCA

0

BB@

0
0
1
0

1

CCA

0

BB@

0
0
0
1

1

CCA

‘Cat’ ‘Dog’ ‘Car’ ‘Bus’

A prediction here is actually a distribution over the k classes. This
leads to the SoftMax function described below (derivation in the
notes!). That is our hypothesis is a vector of k values:

P(y = j |x ; ✓̄) =
exp(✓Tj x)Pk
i=1 exp(✓

T
i x)

.

Here each ✓j has the same dimension as x , i.e., x , ✓j 2 Rd+1 for
j = 1, . . . , k .

Mobile User

5555

Extending Logistic Regression to K > 2 classesExtending Logistic Regression to K > 2 classes

Choose class K to be the Choose class K to be the ddreference classreference classee and and
represent each of the other classes as a logistic represent each of the other classes as a logistic
function of the odds of class function of the odds of class kk versus class K:versus class K:

"%�
P�y � 	|x�
P�y� K|x�

� w	 · x

"%�
P�y �
|x�
P�y� K|x�

� w
 · x

���

"%�
P �y � K � 	|x�
P �y � K |x�

� wK�	 · x

Gradient ascent can be applied to Gradient ascent can be applied to
simultaneously train all of these weight vectors simultaneously train all of these weight vectors
wwkk

Mobile User

Summary of Introduction to Classification

I We used the principle of maximum likelihood (and a
probabilistic model) to extend to classification.

I We developed logistic regression from this principle.
I Logistic regression is widely used today.

I We noticed a familiar pattern: take derivatives of the
likelihood, and the derivatives had this (hopefully) intuitive
“misprediction form”

4646

Deriving a Learning AlgorithmDeriving a Learning Algorithm
Since we are fitting a conditional probability distribution, we Since we are fitting a conditional probability distribution, we no no
longer seek to minimize the loss on the training data. Instead,longer seek to minimize the loss on the training data. Instead, we we
seek to find the probability distribution seek to find the probability distribution hh that is most likely given the that is most likely given the
training datatraining data
Let S be the training sample. Our goal is to find Let S be the training sample. Our goal is to find hh to maximize P(to maximize P(hh | |
S):S):

�'�#�-
h

P�h|S� � �'�#�-
h

P�S|h�P�h�
P �S�

�. ��.�(� �*"�

� �'�#�-
h

P �S|h�P�h� ����*(� P�S� �%�($�) ��&�$� %$ h

� �'�#�-
h

P �S|h� !� ,� �((*#� P�h� � *$!�%'#

� �'�#�-
h

"%�P�S|h� ����*(� "%� !(#%$%)%$!�

The distribution P(S|h) is called the likelihood function. The log
likelihood is frequently used as the objective function for learning. It is
often written as �(w).

The h that maximizes the likelihood on the training data is called the
maximum likelihood estimator (MLE)

Summary of Introduction to Classification

I We used the principle of maximum likelihood (and a
probabilistic model) to extend to classification.

I We developed logistic regression from this principle.
I Logistic regression is widely used today.

I We noticed a familiar pattern: take derivatives of the
likelihood, and the derivatives had this (hopefully) intuitive
“misprediction form”

Summary of Introduction to Classification

I We used the principle of maximum likelihood (and a
probabilistic model) to extend to classification.

I We developed logistic regression from this principle.
I Logistic regression is widely used today.

I We noticed a familiar pattern: take derivatives of the
likelihood, and the derivatives had this (hopefully) intuitive
“misprediction form”

4747

Computing the LikelihoodComputing the Likelihood
In our framework, we assume that each training In our framework, we assume that each training
example (example (xxii,,yyii) is drawn from the same (but) is drawn from the same (but
unknown) probability distribution P(unknown) probability distribution P(xx,,yy). This). This
means that the log likelihood of S is the sum of means that the log likelihood of S is the sum of
the log likelihoods of the individual training the log likelihoods of the individual training
examples:examples:

Y
"%� P �S|h� � "%�

i
P �xi, yi|h�

i

X
� "%� P �xi, yi|h�

4848

Computing the Likelihood (2)Computing the Likelihood (2)

Recall that Recall that anyany joint distribution P(a,b) can be joint distribution P(a,b) can be
factored as P(a|b) P(b). Hence, we can writefactored as P(a|b) P(b). Hence, we can write

In our case, P(In our case, P(xx | | hh) = P() = P(xx), because it does not), because it does not
depend on depend on hh, so, so

�'�#�-
h

"%�P �S|h� � �'�#�-
h

X

i

� �'�#�-
h

X

i

"%�P �xi, yi|h�

"%�P �yi|xi, h�P �xi|h�

�'�#�-
h

"%�P �S|h� � �'�#�-
h

X

i

� �'�#�-
h

X

i

"%�P �yi|xi, h�P �xi|h�

"%�P �yi|xi, h�

Classification Lecture Summary

I We saw the di↵erences between classification and regression.
I We learned about a principle for probabilistic interpretation for

linear regression and classification: Maximum Likelihood.
I We used this to derive logistic regression.
I The Maximum Likelihood principle will be used again next

lecture (and in the future)

