
CMSC 478
Lecture

KMA Solaiman

Supervised Learning: Classi ication,
Perceptrons

Some slides are slightly adapted from Chris Re´, Stanford ML

Visual version of linear regression: Learning

Let h✓(x) =
Pd

j=0 ✓jxj want to choose ✓ so that h✓(x) ⇡ y . One
popular idea called least squares

J(✓) =
1

2

nX

i=1

⇣
h✓(x

(i))� y (i)
⌘2

.

Choose
✓ = argmin

✓
J(✓).

Solving the least squares optimization problem.

Gradient
Descent
Animation

Gradient Descent

• ! " = " − 4 ! + 1
• Find the weight (value of ") that

minimizes the loss !
• !" " =	?
• " = 2.5
• given the current value of w,

adjusting "	 by an amount that has
the negative of the sign of !′ "
leads to a smaller value of !.

!

Gradient Descent

• ! " = " − 4 ! + 1	
• Find the weight (value of ") that

minimizes the loss J
• !" " =	?
• " = 2.5
• given the current value of w,

adjusting "	 by an amount that has
the negative of the sign of !′ "
leads to a smaller value of !.

!

" = "	 − +	 ∗ !′ "

Gradient Descent

✓(0) =0

✓(t+1)
j =✓(t)j � ↵

@

@✓j
J(✓(t)) for j = 0, . . . , d .

size bedrooms lot size
x (1) 2104 4 45k
x (2) 2500 3 30k

Price
y (1) 400
y (2) 900

What’s a prediction here?

h(x) = ✓0 + ✓1x1 + ✓2x2 + ✓3x3.
J(✓) =

1

2
i=1

h✓(x
(i))� y (i)

nX⇣ ⌘2
.

Gradient Descent Computation

✓(t+1)
j = ✓(t)j � ↵

@

@✓j
J(✓(t)) for j = 0, . . . , d .

Note that ↵ is called the learning rate or step size.

Let’s compute the derivatives. . .

@

@✓j
J(✓(t)) =

nX

i=1

1

2

@

@✓j

⇣
h✓(x

(i))� y (i)
⌘2

=
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘ @

@✓j
h✓(x

(i))

For our particular h✓ we have:

h✓(x) = ✓0x0 + ✓1x1 + · · ·+ ✓dxd so
@

@✓j
h✓(x) = xj

Gradient Descent Computation

✓(t+1)
j = ✓(t)j � ↵

@

@✓j
J(✓(t)) for j = 0, . . . , d .

Note that ↵ is called the learning rate or step size.

Let’s compute the derivatives. . .

@

@✓j
J(✓(t)) =

nX

i=1

1

2

@

@✓j

⇣
h✓(x

(i))� y (i)
⌘2

=
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘ @

@✓j
h✓(x

(i))

For our particular h✓ we have:

h✓(x) = ✓0x0 + ✓1x1 + · · ·+ ✓dxd so
@

@✓j
h✓(x) = xj

Gradient Descent Computation

Thus, our update rule for component j can be written:

✓(t+1)
j = ✓(t)j � ↵

nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i)j .

We write this in vector notation for j = 0, . . . , d as:

✓(t+1) = ✓(t) � ↵
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i).

Saves us a lot of writing! And easier to understand . . . eventually.

Gradient Descent Computation

Thus, our update rule for component j can be written:

✓(t+1)
j = ✓(t)j � ↵

nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i)j .

We write this in vector notation for j = 0, . . . , d as:

✓(t+1) = ✓(t) � ↵
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i).

Saves us a lot of writing! And easier to understand . . . eventually.

Batch Versus Stochastic Minibatch: Motivation

Consider our update rule:

✓(t+1) = ✓(t) � ↵
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i).

I A single update, our rule examines all n data points.

I In some modern applications (more later) n may be in the
billions or trillions!
I E.g., we try to “predict” every word on the web.

I Idea Sample a few points (maybe even just one!) to
approximate the gradient called Stochastic Gradient (SGD).
I SGD is the workhorse of modern ML, e.g., pytorch and

tensorflow.

Batch Versus Stochastic Minibatch: Motivation

Consider our update rule:

✓(t+1) = ✓(t) � ↵
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i).

I A single update, our rule examines all n data points.
I In some modern applications (more later) n may be in the

billions or trillions!
I E.g., we try to “predict” every word on the web.

I Idea Sample a few points (maybe even just one!) to
approximate the gradient called Stochastic Gradient (SGD).
I SGD is the workhorse of modern ML, e.g., pytorch and

tensorflow.

Batch Versus Stochastic Minibatch: Motivation

Consider our update rule:

✓(t+1) = ✓(t) � ↵
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i).

I A single update, our rule examines all n data points.
I In some modern applications (more later) n may be in the

billions or trillions!
I E.g., we try to “predict” every word on the web.

I Idea Sample a few points (maybe even just one!) to
approximate the gradient called Stochastic Gradient (SGD).
I SGD is the workhorse of modern ML, e.g., pytorch and

tensorflow.

Stochastic Minibatch

I We randomly select a batch of B ✓ {1, . . . , n} where |B | < n.

I We approximate the gradient using just those B points as
follows (vs. gradient descent)

1

|B |
X

j2B

⇣
h✓(x

(j))� y (j)
⌘
x (j) v.s.

1

n

nX

j=1

⇣
h✓(x

(j))� y (j)
⌘
x (j).

I So our update rule for SGD is:

✓(t+1) = ✓(t) � ↵B

X

j2B

⇣
h✓(x

(j))� y (j)
⌘
x (j).

I NB: scaling of |B | versus n is “hidden” inside choice of ↵B .

Stochastic Minibatch

I We randomly select a batch of B ✓ {1, . . . , n} where |B | < n.

I We approximate the gradient using just those B points as
follows (vs. gradient descent)

1

|B |
X

j2B

⇣
h✓(x

(j))� y (j)
⌘
x (j) v.s.

1

n

nX

j=1

⇣
h✓(x

(j))� y (j)
⌘
x (j).

I So our update rule for SGD is:

✓(t+1) = ✓(t) � ↵B

X

j2B

⇣
h✓(x

(j))� y (j)
⌘
x (j).

I NB: scaling of |B | versus n is “hidden” inside choice of ↵B .

All minibatches are used for each iteration, or epoch and then
start the next one

Stochastic Minibatch vs. Gradient Descent

I Recall our rule B points as follows:

✓(t+1) = ✓(t) � ↵B

X

j2B

⇣
h✓(x

(j))� y (j)
⌘
x (j).

I If |B | = {1, . . . , n} (the whole set), then they coincide.

I Smaller B implies a lower quality approximation of the
gradient (higher variance).

I Nevertheless, it may actually converge faster! (Case where the
dataset has many copies of the same point–extreme, but lots
of redundancy)

I In practice, choose B proportional to what works well on
modern parallel hardware (GPUs).

Stochastic Minibatch vs. Gradient Descent

I Recall our rule B points as follows:

✓(t+1) = ✓(t) � ↵B

X

j2B

⇣
h✓(x

(j))� y (j)
⌘
x (j).

I If |B | = {1, . . . , n} (the whole set), then they coincide.

I Smaller B implies a lower quality approximation of the
gradient (higher variance).

I Nevertheless, it may actually converge faster! (Case where the
dataset has many copies of the same point–extreme, but lots
of redundancy)

I In practice, choose B proportional to what works well on
modern parallel hardware (GPUs).

Supervised Learning and Classification

I Perceptrons
I Linear Regression via a Pro a ilistic
nterpretation
I Logistic Regression

Linear Classification: Mushroom
and Goats

Linear
Classification

Classification

Given a training set {(x (i), y (i)) for i = 1, . . . , n} let y (i) 2 {0, 1}.
Why not use regression, say least squares? A picture . . .

Loss Function for Classification: 0-1 Loss

Loss Function for Classification: 0-1 Loss

Loss Function for Classification: 0-1 Loss

Perceptron Loss

Logistic Regression: Link Functions

Given a training set {(x (i), y (i)) for i = 1, . . . , n} let y (i) 2 {0, 1}.
Want h✓(x) 2 [0, 1]. Let’s pick a smooth function:

h✓(x) = g(✓T x)

Here, g is a link function. There are many. . .

but we’ll pick one!

g(z) =
1

1 + e�z
.

How do we interpret h✓(x)?

P(y = 1 | x ; ✓) = h✓(x)

P(y = 0 | x ; ✓) = 1� h✓(x)

Logistic Regression: Link Functions

Given a training set {(x (i), y (i)) for i = 1, . . . , n} let y (i) 2 {0, 1}.
Want h✓(x) 2 [0, 1]. Let’s pick a smooth function:

h✓(x) = g(✓T x)

Here, g is a link function. There are many. . . but we’ll pick one!

g(z) =
1

1 + e�z
.

How do we interpret h✓(x)?

P(y = 1 | x ; ✓) = h✓(x)

P(y = 0 | x ; ✓) = 1� h✓(x)

Logistic Regression: Link Functions

Given a training set {(x (i), y (i)) for i = 1, . . . , n} let y (i) 2 {0, 1}.
Want h✓(x) 2 [0, 1]. Let’s pick a smooth function:

h✓(x) = g(✓T x)

Here, g is a link function. There are many. . . but we’ll pick one!

g(z) =
1

1 + e�z
.

How do we interpret h✓(x)?

P(y = 1 | x ; ✓) = h✓(x)

P(y = 0 | x ; ✓) = 1� h✓(x)

SIGMOID

Logistic Regression: Link Functions

Let’s write the Likelihood function. Recall:

P(y = 1 | x ; ✓) =h✓(x)

P(y = 0 | x ; ✓) =1� h✓(x)

Then,

L(✓) =P(y | X ; ✓) =
nY

i=1

p(y (i) | x (i); ✓)

=
nY

i=1

h✓(x
(i))y

(i)
(1� h✓(x

(i)))1�y (i)
exponents encode “if-then”

Taking logs to compute the log likelihood `(✓) we have:

`(✓) = log L(✓) =
nX

i=1

y
(i) log h✓(x

(i)) + (1� y
(i)) log(1� h✓(x

(i)))

Logistic Regression: Link Functions

Let’s write the Likelihood function. Recall:

P(y = 1 | x ; ✓) =h✓(x)

P(y = 0 | x ; ✓) =1� h✓(x)

Then,

L(✓) =P(y | X ; ✓) =
nY

i=1

p(y (i) | x (i); ✓)

We need to go back to Maximum Likelihood Estimation
that we saw before at the beginning of this lecture.

How do we go to a cost function from P (y | X; θ) ?

Logistic Regression: Link Functions

Let’s write the Likelihood function. Recall:

P(y = 1 | x ; ✓) =h✓(x)

P(y = 0 | x ; ✓) =1� h✓(x)

Then,

L(✓) =P(y | X ; ✓) =
nY

i=1

p(y (i) | x (i); ✓)

=
nY

i=1

h✓(x
(i))y

(i)
(1� h✓(x

(i)))1�y (i)
exponents encode “if-then”

Taking logs to compute the log likelihood `(✓) we have:

`(✓) = log L(✓) =
nX

i=1

y
(i) log h✓(x

(i)) + (1� y
(i)) log(1� h✓(x

(i)))

Logistic Regression: Link Functions

Let’s write the Likelihood function. Recall:

P(y = 1 | x ; ✓) =h✓(x)

P(y = 0 | x ; ✓) =1� h✓(x)

Then,

L(✓) =P(y | X ; ✓) =
nY

i=1

p(y (i) | x (i); ✓)

=
nY

i=1

h✓(x
(i))y

(i)
(1� h✓(x

(i)))1�y (i)
exponents encode “if-then”

Taking logs to compute the log likelihood `(✓) we have:

`(✓) = log L(✓) =
nX

i=1

y
(i) log h✓(x

(i)) + (1� y
(i)) log(1� h✓(x

(i)))

Now to solve it. . .

`(✓) = log L(✓) =
nX

i=1

y
(i) log h✓(x

(i)) + (1� y
(i)) log(1� h✓(x

(i)))

We maximize for ✓ but we already saw how to do this! Just
compute derivative, run (S)GD and you’re done with it!

Takeaway: This is another example of the max likelihood
method: we setup the likelihood, take logs, and compute
derivatives.

Time Permitting: There is magic in the derivative. . .

Even more, the batch update can be written in a remarkably

familiar form:

✓(t+1) = ✓(t) +
X

j2B
(y (j) � h✓(x

(j)))x (j).

We sketch why (you can check!) We drop superscripts to simplify
notation and examine a single data point:

y log h✓(x) + (1� y) log(1� h✓(x))

=� y log(1 + e
�✓T x) + (1� y)(�✓T x)� (1� y) log(1 + e

�✓T x)

=� log(1 + e
�✓T x)� (1� y)(✓T x)

We used 1� h✓(x) =
e�✓T x

1�e�✓T x
. We now compute the derivative of

this expression wrt ✓ and get:

e
�✓T x

1 + e�✓T x
x � (1� y)x = (y � h✓(x))x

Perceptron Learning Algorithm

• Modify link function to output either 0 or 1.
• Make g to be a threshold function
• Then use same ℎ$ + = -(/%+) using this g
• Follow the same update rule for /

Summary of Introduction to Classification

I We used the principle of maximum likelihood (and a
probabilistic model) to extend to classification.

I We developed logistic regression from this principle.
I Logistic regression is widely used today.

I We noticed a familiar pattern: take derivatives of the
likelihood, and the derivatives had this (hopefully) intuitive
“misprediction form”

Summary of Introduction to Classification

I We used the principle of maximum likelihood (and a
probabilistic model) to extend to classification.

I We developed logistic regression from this principle.
I Logistic regression is widely used today.

I We noticed a familiar pattern: take derivatives of the
likelihood, and the derivatives had this (hopefully) intuitive
“misprediction form”

Summary of Introduction to Classification

I We used the principle of maximum likelihood (and a
probabilistic model) to extend to classification.

I We developed logistic regression from this principle.
I Logistic regression is widely used today.

I We noticed a familiar pattern: take derivatives of the
likelihood, and the derivatives had this (hopefully) intuitive
“misprediction form”

Optimization Method Summary

Method

Compute per Step Number of Steps
 to o

SGD
Minibatch SGD

GD
Newton

I In classical stats, d is small (< 100), n is often small, and
exact parameters matter

I In modern ML, d is huge (billions, trillions), n is huge
(trillions), and parameters used only for prediction
 o t o o t t
 o o tt to t o

o t
 to o t ot o t t

 t t o t

I As a result, (minibatch) SGD is the workhorse of ML.

 log ϵ

 ϵ

 ϵ

Classification Lecture Summary

I We saw the di↵erences between classification and regression.
I We learned about a principle for probabilistic interpretation for

linear regression and classification: Maximum Likelihood.
I We used this to derive logistic regression.
I The Maximum Likelihood principle will be used again next

lecture (and in the future)

