
CMSC 478
Lecture �

KMA Solaiman

Supervised Learning: ClassiGication,
Perceptrons

Some slides are slightly adapted from Chris Re´, Stanford ML

Visual version of linear regression: Learning

Let h✓(x) =
Pd

j=0 ✓jxj want to choose ✓ so that h✓(x) ⇡ y . One
popular idea called least squares

J(✓) =
1

2

nX

i=1

⇣
h✓(x

(i))� y (i)
⌘2

.

Choose
✓ = argmin

✓
J(✓).

Solving the least squares optimization problem.

Gradient
Descent
Animation

Gradient Descent

• ! " = " − 4 ! + 1
• Find the weight (value of ") that

minimizes the loss !
• !" " =	?
• " = 2.5
• given the current value of w,

adjusting "	 by an amount that has
the negative of the sign of !′ "
leads to a smaller value of !.

!

Gradient Descent

• ! " = " − 4 ! + 1	
• Find the weight (value of ") that

minimizes the loss J
• !" " =	?
• " = 2.5
• given the current value of w,

adjusting "	 by an amount that has
the negative of the sign of !′ "
leads to a smaller value of !.

!

" = "	 − +	 ∗ !′ "

Gradient Descent

✓(0) =0

✓(t+1)
j =✓(t)j � ↵

@

@✓j
J(✓(t)) for j = 0, . . . , d .

size bedrooms lot size
x (1) 2104 4 45k
x (2) 2500 3 30k

Price
y (1) 400
y (2) 900

What’s a prediction here?

h(x) = ✓0 + ✓1x1 + ✓2x2 + ✓3x3.
J(✓) =

1

2
i=1

h✓(x
(i))� y (i)

nX⇣ ⌘2
.

Gradient Descent Computation

✓(t+1)
j = ✓(t)j � ↵

@

@✓j
J(✓(t)) for j = 0, . . . , d .

Note that ↵ is called the learning rate or step size.

Let’s compute the derivatives. . .

@

@✓j
J(✓(t)) =

nX

i=1

1

2

@

@✓j

⇣
h✓(x

(i))� y (i)
⌘2

=
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘ @

@✓j
h✓(x

(i))

For our particular h✓ we have:

h✓(x) = ✓0x0 + ✓1x1 + · · ·+ ✓dxd so
@

@✓j
h✓(x) = xj

Gradient Descent Computation

✓(t+1)
j = ✓(t)j � ↵

@

@✓j
J(✓(t)) for j = 0, . . . , d .

Note that ↵ is called the learning rate or step size.

Let’s compute the derivatives. . .

@

@✓j
J(✓(t)) =

nX

i=1

1

2

@

@✓j

⇣
h✓(x

(i))� y (i)
⌘2

=
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘ @

@✓j
h✓(x

(i))

For our particular h✓ we have:

h✓(x) = ✓0x0 + ✓1x1 + · · ·+ ✓dxd so
@

@✓j
h✓(x) = xj

Gradient Descent Computation

Thus, our update rule for component j can be written:

✓(t+1)
j = ✓(t)j � ↵

nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i)j .

We write this in vector notation for j = 0, . . . , d as:

✓(t+1) = ✓(t) � ↵
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i).

Saves us a lot of writing! And easier to understand . . . eventually.

Gradient Descent Computation

Thus, our update rule for component j can be written:

✓(t+1)
j = ✓(t)j � ↵

nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i)j .

We write this in vector notation for j = 0, . . . , d as:

✓(t+1) = ✓(t) � ↵
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i).

Saves us a lot of writing! And easier to understand . . . eventually.

Batch Versus Stochastic Minibatch: Motivation

Consider our update rule:

✓(t+1) = ✓(t) � ↵
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i).

I A single update, our rule examines all n data points.

I In some modern applications (more later) n may be in the
billions or trillions!
I E.g., we try to “predict” every word on the web.

I Idea Sample a few points (maybe even just one!) to
approximate the gradient called Stochastic Gradient (SGD).
I SGD is the workhorse of modern ML, e.g., pytorch and

tensorflow.

Batch Versus Stochastic Minibatch: Motivation

Consider our update rule:

✓(t+1) = ✓(t) � ↵
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i).

I A single update, our rule examines all n data points.
I In some modern applications (more later) n may be in the

billions or trillions!
I E.g., we try to “predict” every word on the web.

I Idea Sample a few points (maybe even just one!) to
approximate the gradient called Stochastic Gradient (SGD).
I SGD is the workhorse of modern ML, e.g., pytorch and

tensorflow.

Batch Versus Stochastic Minibatch: Motivation

Consider our update rule:

✓(t+1) = ✓(t) � ↵
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i).

I A single update, our rule examines all n data points.
I In some modern applications (more later) n may be in the

billions or trillions!
I E.g., we try to “predict” every word on the web.

I Idea Sample a few points (maybe even just one!) to
approximate the gradient called Stochastic Gradient (SGD).
I SGD is the workhorse of modern ML, e.g., pytorch and

tensorflow.

Stochastic Minibatch

I We randomly select a batch of B ✓ {1, . . . , n} where |B | < n.

I We approximate the gradient using just those B points as
follows (vs. gradient descent)

1

|B |
X

j2B

⇣
h✓(x

(j))� y (j)
⌘
x (j) v.s.

1

n

nX

j=1

⇣
h✓(x

(j))� y (j)
⌘
x (j).

I So our update rule for SGD is:

✓(t+1) = ✓(t) � ↵B

X

j2B

⇣
h✓(x

(j))� y (j)
⌘
x (j).

I NB: scaling of |B | versus n is “hidden” inside choice of ↵B .

Stochastic Minibatch

I We randomly select a batch of B ✓ {1, . . . , n} where |B | < n.

I We approximate the gradient using just those B points as
follows (vs. gradient descent)

1

|B |
X

j2B

⇣
h✓(x

(j))� y (j)
⌘
x (j) v.s.

1

n

nX

j=1

⇣
h✓(x

(j))� y (j)
⌘
x (j).

I So our update rule for SGD is:

✓(t+1) = ✓(t) � ↵B

X

j2B

⇣
h✓(x

(j))� y (j)
⌘
x (j).

I NB: scaling of |B | versus n is “hidden” inside choice of ↵B .

All minibatches are used for each iteration, or epoch and then
start the next one

Stochastic Minibatch vs. Gradient Descent

I Recall our rule B points as follows:

✓(t+1) = ✓(t) � ↵B

X

j2B

⇣
h✓(x

(j))� y (j)
⌘
x (j).

I If |B | = {1, . . . , n} (the whole set), then they coincide.

I Smaller B implies a lower quality approximation of the
gradient (higher variance).

I Nevertheless, it may actually converge faster! (Case where the
dataset has many copies of the same point–extreme, but lots
of redundancy)

I In practice, choose B proportional to what works well on
modern parallel hardware (GPUs).

Stochastic Minibatch vs. Gradient Descent

I Recall our rule B points as follows:

✓(t+1) = ✓(t) � ↵B

X

j2B

⇣
h✓(x

(j))� y (j)
⌘
x (j).

I If |B | = {1, . . . , n} (the whole set), then they coincide.

I Smaller B implies a lower quality approximation of the
gradient (higher variance).

I Nevertheless, it may actually converge faster! (Case where the
dataset has many copies of the same point–extreme, but lots
of redundancy)

I In practice, choose B proportional to what works well on
modern parallel hardware (GPUs).

Supervised Learning and Classification

I Perceptrons
I Linear Regression via a ProCaCilistic
*nterpretation
I Logistic Regression

Linear Classification: Mushroom
and Goats

Linear
Classification

Classification

Given a training set {(x (i), y (i)) for i = 1, . . . , n} let y (i) 2 {0, 1}.
Why not use regression, say least squares? A picture . . .

Loss Function for Classification: 0-1 Loss

Loss Function for Classification: 0-1 Loss

Loss Function for Classification: 0-1 Loss

Perceptron Loss

Logistic Regression: Link Functions

Given a training set {(x (i), y (i)) for i = 1, . . . , n} let y (i) 2 {0, 1}.
Want h✓(x) 2 [0, 1]. Let’s pick a smooth function:

h✓(x) = g(✓T x)

Here, g is a link function. There are many. . .

but we’ll pick one!

g(z) =
1

1 + e�z
.

How do we interpret h✓(x)?

P(y = 1 | x ; ✓) = h✓(x)

P(y = 0 | x ; ✓) = 1� h✓(x)

Logistic Regression: Link Functions

Given a training set {(x (i), y (i)) for i = 1, . . . , n} let y (i) 2 {0, 1}.
Want h✓(x) 2 [0, 1]. Let’s pick a smooth function:

h✓(x) = g(✓T x)

Here, g is a link function. There are many. . . but we’ll pick one!

g(z) =
1

1 + e�z
.

How do we interpret h✓(x)?

P(y = 1 | x ; ✓) = h✓(x)

P(y = 0 | x ; ✓) = 1� h✓(x)

Logistic Regression: Link Functions

Given a training set {(x (i), y (i)) for i = 1, . . . , n} let y (i) 2 {0, 1}.
Want h✓(x) 2 [0, 1]. Let’s pick a smooth function:

h✓(x) = g(✓T x)

Here, g is a link function. There are many. . . but we’ll pick one!

g(z) =
1

1 + e�z
.

How do we interpret h✓(x)?

P(y = 1 | x ; ✓) = h✓(x)

P(y = 0 | x ; ✓) = 1� h✓(x)

SIGMOID

Logistic Regression: Link Functions

Let’s write the Likelihood function. Recall:

P(y = 1 | x ; ✓) =h✓(x)

P(y = 0 | x ; ✓) =1� h✓(x)

Then,

L(✓) =P(y | X ; ✓) =
nY

i=1

p(y (i) | x (i); ✓)

=
nY

i=1

h✓(x
(i))y

(i)
(1� h✓(x

(i)))1�y (i)
exponents encode “if-then”

Taking logs to compute the log likelihood `(✓) we have:

`(✓) = log L(✓) =
nX

i=1

y
(i) log h✓(x

(i)) + (1� y
(i)) log(1� h✓(x

(i)))

Logistic Regression: Link Functions

Let’s write the Likelihood function. Recall:

P(y = 1 | x ; ✓) =h✓(x)

P(y = 0 | x ; ✓) =1� h✓(x)

Then,

L(✓) =P(y | X ; ✓) =
nY

i=1

p(y (i) | x (i); ✓)

We need to go back to Maximum Likelihood Estimation
that we saw before at the beginning of this lecture.

How do we go to a cost function from P (y | X; θ) ?

Logistic Regression: Link Functions

Let’s write the Likelihood function. Recall:

P(y = 1 | x ; ✓) =h✓(x)

P(y = 0 | x ; ✓) =1� h✓(x)

Then,

L(✓) =P(y | X ; ✓) =
nY

i=1

p(y (i) | x (i); ✓)

=
nY

i=1

h✓(x
(i))y

(i)
(1� h✓(x

(i)))1�y (i)
exponents encode “if-then”

Taking logs to compute the log likelihood `(✓) we have:

`(✓) = log L(✓) =
nX

i=1

y
(i) log h✓(x

(i)) + (1� y
(i)) log(1� h✓(x

(i)))

Logistic Regression: Link Functions

Let’s write the Likelihood function. Recall:

P(y = 1 | x ; ✓) =h✓(x)

P(y = 0 | x ; ✓) =1� h✓(x)

Then,

L(✓) =P(y | X ; ✓) =
nY

i=1

p(y (i) | x (i); ✓)

=
nY

i=1

h✓(x
(i))y

(i)
(1� h✓(x

(i)))1�y (i)
exponents encode “if-then”

Taking logs to compute the log likelihood `(✓) we have:

`(✓) = log L(✓) =
nX

i=1

y
(i) log h✓(x

(i)) + (1� y
(i)) log(1� h✓(x

(i)))

Now to solve it. . .

`(✓) = log L(✓) =
nX

i=1

y
(i) log h✓(x

(i)) + (1� y
(i)) log(1� h✓(x

(i)))

We maximize for ✓ but we already saw how to do this! Just
compute derivative, run (S)GD and you’re done with it!

Takeaway: This is another example of the max likelihood
method: we setup the likelihood, take logs, and compute
derivatives.

Time Permitting: There is magic in the derivative. . .

Even more, the batch update can be written in a remarkably

familiar form:

✓(t+1) = ✓(t) +
X

j2B
(y (j) � h✓(x

(j)))x (j).

We sketch why (you can check!) We drop superscripts to simplify
notation and examine a single data point:

y log h✓(x) + (1� y) log(1� h✓(x))

=� y log(1 + e
�✓T x) + (1� y)(�✓T x)� (1� y) log(1 + e

�✓T x)

=� log(1 + e
�✓T x)� (1� y)(✓T x)

We used 1� h✓(x) =
e�✓T x

1�e�✓T x
. We now compute the derivative of

this expression wrt ✓ and get:

e
�✓T x

1 + e�✓T x
x � (1� y)x = (y � h✓(x))x

Perceptron Learning Algorithm

• Modify link function to output either 0 or 1.
• Make g to be a threshold function
• Then use same ℎ$ + = -(/%+) using this g
• Follow the same update rule for /

Summary of Introduction to Classification

I We used the principle of maximum likelihood (and a
probabilistic model) to extend to classification.

I We developed logistic regression from this principle.
I Logistic regression is widely used today.

I We noticed a familiar pattern: take derivatives of the
likelihood, and the derivatives had this (hopefully) intuitive
“misprediction form”

Summary of Introduction to Classification

I We used the principle of maximum likelihood (and a
probabilistic model) to extend to classification.

I We developed logistic regression from this principle.
I Logistic regression is widely used today.

I We noticed a familiar pattern: take derivatives of the
likelihood, and the derivatives had this (hopefully) intuitive
“misprediction form”

Summary of Introduction to Classification

I We used the principle of maximum likelihood (and a
probabilistic model) to extend to classification.

I We developed logistic regression from this principle.
I Logistic regression is widely used today.

I We noticed a familiar pattern: take derivatives of the
likelihood, and the derivatives had this (hopefully) intuitive
“misprediction form”

Optimization Method Summary

Method

Compute per Step Number of Steps
 to DoOWFSHFODF

SGD
Minibatch SGD

GD
Newton

I In classical stats, d is small (< 100), n is often small, and
exact parameters matter

I In modern ML, d is huge (billions, trillions), n is huge
(trillions), and parameters used only for prediction
 5IFTF BSF BQQSoYJNBtF OVNCFS oG DoNQVtJOH TtFQT
 $oOWFSHFODF IBQQFOT XIFO MoTT TFttMFT to XJtIJO BO FSSoS SBOHF

BSoVOE tIF GJOBM WBMVF�
 /FXtoO XoVME CF WFSZ GBTt
 XIFSF 4(% OFFET B Mot oG TtFQ
 CVt

JOEJWJEVBM TtFQT BSF GBTt
 NBLFT VQ GoS Jt

I As a result, (minibatch) SGD is the workhorse of ML.

ȵ log	��ϵ

ȵ ϵ ��

ȵ ϵ ��

Ϧ	E

Ϧ	OE

͙	OE�

Classification Lecture Summary

I We saw the di↵erences between classification and regression.
I We learned about a principle for probabilistic interpretation for

linear regression and classification: Maximum Likelihood.
I We used this to derive logistic regression.
I The Maximum Likelihood principle will be used again next

lecture (and in the future)

