CMSC 478

Lecture 3
KMA Solaiman

Supervised Learning: Classification,
Perceptrons

Visual version of linear regression: Learning

350000 -

300000 -

250000 -

200000 -

8000 10000 12000 14000
lot

Let hg(x) = Z}f:o 0;x; want to choose 6 so that hy(x) ~ y. One

popular idea called least squares
Sy = LN (0 — S0
()—2;(9@)=y,

Choose
0 = argmin J(6).
0

Solving the least squares optimization problem.

Gradient
Descent 3

Animation

_“«

)

<N

>

M ||

O Once @ Loop O Reflect

Gradient Descent

cJ@)=0-4)*+1

* Find the weight (value of 8) that
minimizes the loss (]

* J'(0) =7

e9=25

* given the current value of w,
adjusting 6 by an amount that has

the negative of the sign of J'(0)
leads to a smaller value of /.

20

25

30

35

45

5.0

55

6.0

Gradient Descent

cJ@)=0-4)*+1

* Find the weight (value of 8) that
minimizes the loss J

- J'(6) =7

e =25

* given the current value of w,
adjusting 8 by an amount that has

the negative of the sign of 7'(9)
leads to a smaller value of .

20 25 30 35 40 45 50 55

0

6.0

Gradient Descent

size bedrooms lot size Price
x(1) | 2104 4 45k y) 400
x(2) | 2500 3 30k y@ | 900

What's a prediction here?

n

50) =5 3 (hox) —y)".

h(X) = 0y + O1x1 + Orx0 + O3x3. i=1
09 =0
oy =gt) aiJ(e(”) for j=0,....d.

T

Gradient Descent Computation

(t+1) _ p(t) _ (t)
0; =0;" — 89J(9) forj=0,...,d.

Note that « is called the learning rate or step size.

Let's compute the derivatives. .

, 10
06 J(e())_zzae (he() - ())

—Z (ho(x?) —y) 2 5 1)

Gradient Descent Computation

(t+1) _ p(t) _ (t)
0; =0;" — 89J(9) forj=0,...,d.

Note that « is called the learning rate or step size.

Let's compute the derivatives. .

, 10
00); J(e())_zzae (he() - ())

—Z (ho(x?) —y) 2 5 1)

For our particular hg we have:

0
hQ(X) = Ooxp + 01x1 + -+ + O4x4 so a—ehg(X) = Xj

Gradient Descent Computation

Thus, our update rule for component j can be written:

1 ! H H I
Q}H) — QJ(t) — ozz (he(X()) — yl)) XJ().
=1

Gradient Descent Computation

Thus, our update rule for component j can be written:

1 ! H H I
QJ(H) — QJ(t) — ozz (he(x()) — yl)) XJ().
=1

We write this in vector notation for j = 0,...,d as:
o+ =) — 0" (hg(x(i)) _ y(i)) ()
i=1

Saves us a lot of writing! And easier to understand ... eventually.

Batch Versus Stochastic Minibatch: Motivation

Consider our update rule:
o+ =) — 0" (hg(x(i)) _ y(i)) ()
i=1

» A single update, our rule examines all n data points.

Batch Versus Stochastic Minibatch: Motivation

Consider our update rule:
o+ =) — 0" (hg(x(i)) _ y(i)) ()
i=1

» A single update, our rule examines all n data points.

» In some modern applications (more later) n may be in the
billions or trillions!

» E.g., we try to “predict” every word on the web.

Batch Versus Stochastic Minibatch: Motivation

Consider our update rule:
o+ =) — 0" (hg(x(i)) _ y(i)) ()
i=1

» A single update, our rule examines all n data points.

» In some modern applications (more later) n may be in the
billions or trillions!

» E.g., we try to “predict” every word on the web.

» Idea Sample a few points (maybe even just one!) to
approximate the gradient called Stochastic Gradient (SGD).

» SGD is the workhorse of modern ML, e.g., pytorch and
tensorflow.

Stochastic Minibatch

» We randomly select a batch of B C {1,..., n} where |B| < n.

» We approximate the gradient using just those B points as
follows (vs. gradient descent)

n

|_[13| ; (hg(X(j)) _ y(j)) MO %Z (hg(x(j)) _ y(j)) 0

Stochastic Minibatch

» We randomly select a batch of B C {1,..., n} where |B| < n.

» We approximate the gradient using just those B points as
follows (vs. gradient descent)

n

|_[13| ; (he(X(j)) _ y(j)) MO %Z (hg(x(j)) _ y(j)))

j=1

> SO Our update rule for SGD |S Is':\tlérr{litﬂtaiggtesn%reusedforeach iteration, or epoch and then
o) — 90 — g " (he(xo)) _ yo)) <0,
JjeB

» NB: scaling of |B| versus nis “hidden” inside choice of ag.

Stochastic Minibatch vs. Gradient Descent

» Recall our rule B points as follows:

(t+1) _ g(t) _ bo(x0)Y — @) xG)
0 0 B 9() y

JjEB

» If |B] ={1,...,n} (the whole set), then they coincide.

» Smaller B implies a lower quality approximation of the
gradient (higher variance).

» Nevertheless, it may actually converge faster! (Case where the
dataset has many copies of the same point—extreme, but lots
of redundancy)

Stochastic Minibatch vs. Gradient Descent

» Recall our rule B points as follows:

o) = o) — 0§ (hH(X(j)) _ y(J)> NO)
JjeB
» If |B] ={1,...,n} (the whole set), then they coincide.

» Smaller B implies a lower quality approximation of the
gradient (higher variance).

» Nevertheless, it may actually converge faster! (Case where the
dataset has many copies of the same point—extreme, but lots
of redundancy)

» In practice, choose B proportional to what works well on
modern parallel hardware (GPUs).

Supervised Learning and Classification

» Perceptrons
» Linear Regression via a Probabilistic

Interpretation

» Logistic Regression

Linear Classification: Mushroom
and Goats

color width height label

0 -0.311688 0.358501 0.936567 edible
1 -0.472327 0.817906 0.468387 poisonous

sign(w, * color + w,, * width + wy, * height)

sign(0 * —0.472327 + 1 x 0.817906 — 1 % 0.468387) = sign(0.349519) = +1
sign(0 * —0.311688 + 1 * 0.358501 — 1 % 0.936567) = sign(—0.578066) = —1

Linear

Classification

- O

© 00 N O o B~ W N

Y
o

x1
0.048589
0.200023
1.595538
1.315929
1.087080
0.512235
0.265039
1.606480
0.977585
1.908708
2.503476

X2
1120275
0.956716
1.023582
1.452371
1.513219
1.594651
1.008506
1.571889
1.5650227
1.121259
3.002576

x2

45 |

40 1

35 1

3.0 1

45 -

2.0 -

15 1

10 4

=
B
e
. *
..
1 2
x1

Classification

Given a training set {(x(), y()) for i =1,... n} let y() € {0,1}.
Why not use regression, say least squares? A picture ...

Loss Function for Classification: O-1 Loss

Loss Function for Classification: 0-1 Loss

0 ifyxw-x>0
Lo . =
0-1(y, W - x) {1 otherwise

Loss Function for Classification: 0-1 Loss

0 ifysw-x>0
Ly ‘X)) =
0-1(y, W - X) {1 otherwise

Y .
Lo, = g 1
-1 o Loss
y=-1 0 1
y=1 1 0

1 [
0. ..

-1 0 1

Perceptron Loss

0 ifysw-x>0
—y*W-X otherwise

Lp(y, w - x) ={

Loss

def perceptron(df, label = 'y', epochs = 100, bias = True):

if bias:
df = df.copy()
df.insert(@, ' x0 ', 1)

w = np.zeros(len(df.columns) - 1)
features = [column for column in df.columns if column != label]

for _ in range(epochs):

errors = 0

for _, row in df.iterrows():
row[features]
row[label]

f y % np.dot(w, x) <= 0:
W=WH+Y % X
errors += 1

yield w.copy()
if errors ==
break

X
y
i

0.0 - e e 00 0

000 025 050 075 100 125 150 175 200
petal width (cm)

Graph of Iris Dataset with logistic regression

Logistic Regression: Link Functions

Given a training set {(x(), y()) for i =1,...,n} let y() € {0,1}.
Want hg(x) € [0, 1]. Let's pick a smooth function:

ho(x) = g(0" x)

Here, g is a link function. There are many. ..

Logistic Regression: Link Functions

Given a training set {(x(), y()) for i =1,...,n} let y() € {0,1}.
Want hg(x) € [0, 1]. Let's pick a smooth function:

ho(x) = g(8" x)
Here, g is a link function. There are many. .. but we'll pick one!

1
14+ e 2

g(z) =

0:5

Logistic Regression: Link Functions

Given a training set {(x(), y()) for i =1,...,n} let y() € {0,1}.
Want hg(x) € [0, 1]. Let’s pick a smooth function:

ho(x) = g(0" x)
Here, g is a link function. There are many. .. but we'll pick one!

1

: SIGMOID
1+ e 2

g(z) =

How do we interpret hg(x)?

Ply =11x;0) = hy(x)
Ply=0]x;0) =1— hy(x)

0:5

Logistic Regression: Link Functions

Let's write the Likelihood function. Recall:

P(y = 1| x;0) =hy(x)
P(y =0 x;0) =1 — hyg(x)

Then,

L) =P(y | X;0) = | [(') | x17); 6)
=1

Logistic Regression: Link Functions

Let's write the Likelihood function. Recall:

Ply =1]x;0) =he(x)
Py =0 x;0) =1 — hy(x)

Then,
L(0) =P(y | X;6) = Hp (1 x;0)

How do we go to a cost function from P (y | X; 6) ?

We need to go back to Maximum Likelihood Estimation
that we saw before at the beginning of this lecture.

Logistic Regression: Link Functions

Let's write the Likelihood function. Recall:

P(y = 1| x;0) =hy(x)
P(y =0]x;0) =1— hy(x)

Then,
L(0) =P(y | X;0) =][p(y\" | x1); 6)
=1

— H hg(x(i))y(i)(l — hg(x(")))l_y(i) exponents encode “if-then”
i=1

Logistic Regression: Link Functions

Let's write the Likelihood function. Recall:

P(y = 1| x;0) =hy(x)
P(y =0 x;0) =1 — hy(x)

Then,
L) =P(y | X;0) = | [p(y'") | x17); 6)
i=1
— H hg(x(i))y(i)(l — hg(x(i)))l_y(i) exponents encode “if-then”
i=1

Taking logs to compute the log likelihood ¢(8) we have:

(0) = log L(0) = zn:y(") log ho(x\) + (1 — ¥\ log(1 — he(x("))
=1

Now to solve it. ..

(0) = log L(0) = Zn:y(") log ho(x\7) + (1 — y 1)) log(1 — he(x()))
=1

We maximize for 6 but we already saw how to do this! Just
compute derivative, run (S)GD and you're done with it!

DA

Time Permitting: There is magic in the derivative. ..

Even more, the batch update can be written in a remarkably
familiar form:

g(t+1) — g(t) Z(y(j) — hy(xU))x).
JjeB

We sketch why (you can check!) We drop superscripts to simplify
notation and examine a single data point:

y log hp(x) + (1 — y) log(1 — ho(x))
=~ ylog(L+e ")+ (1= y)(=07x) = (1~ y)log(1 + e ')
= —log(1+e"") — (1—y)(87x)

T
e—9 X

We used 1 — hy(x) =
this expression wrt 6 and get:

P We now compute the derivative of
—e X

—0Tx

T (L yx = = hy))x

Perceptron Learning Algorithm

* Modify link function to output either O or 1.
* Make g to be a threshold function
* Then use same hy(x) = g(6'x) using this g

* Follow the same update rule for 6

(2) = 1 ifz2>0
=10 ifz<0

Summary of Introduction to Classification

» We used the principle of maximum likelihood (and a
probabilistic model) to extend to classification.

Summary of Introduction to Classification

» We used the principle of maximum likelihood (and a
probabilistic model) to extend to classification.

» \We developed logistic regression from this principle.
» Logistic regression is widely used today.

Summary of Introduction to Classification

» We used the principle of maximum likelihood (and a
probabilistic model) to extend to classification.

» \We developed logistic regression from this principle.
» Logistic regression is widely used today.

» We noticed a familiar pattern: take derivatives of the

likelihood, and the derivatives had this (hopefully) intuitive
“misprediction form”

Optimization Method Summary

Compute per Step Number of Steps

Method to convergence
SGD 6(d) ~ €2
Minibatch SGD
GD 6(nd) -l
Newton Q(nd?) ~log(1/€)

» In classical stats, d is small (< 100), n is often small, and
exact parameters matter

» In modern ML, d is huge (billions, trillions), n is huge
(trillions), and parameters used only for prediction

» These are approximate number of computing steps

» Convergence happens when loss settles to within an error range
around the final value.

» Newton would be very fast, where SGD needs a lot of step, but
individual steps are fast, makes up for it

» As a result, (minibatch) SGD is the workhorse of ML.

Classification Lecture Summary

» \We saw the differences between classification and regression.

» \We learned about a principle for probabilistic interpretation for
linear regression and classification: Maximum Likelihood.

» We used this to derive logistic regression.
» The Maximum Likelihood principle will be used again next
lecture (and in the future)

