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Supervised Learning and Linear Regression

» Definitions
» Linear Regression
» Learning Algorithm
» Cost / Loss Function
» Gradient Descent
» Batch and Stochastic Gradient
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Supervised Learning

» A hypothesis or a prediction function is function h: X — Y

» X is an image, and Y contains “cat” or “not.”
» X is a text snippet, and )V contains “hate speech” or “not.”
» X is house data, and Y could be the price.

> A training set is a set of pairs {(x{1),y(1)) ... (x(n)y(n)
st. xXDeXandyW eYfori=1,...,n

» Given a training set our goal is to produce a good prediction
function h (orf)

» Defining “good” will take us a bit. It's a modeling question!
» We will want to use h on new data not in the training set.

» If )V is continuous, then called a regression problem.

» If )V is discrete, then called a classification problem.



Our first example: Regression using Housing Data.



Example Data (Housing Prices from Ames Dataset from

Kaggle)
SalePrice Lot.Area

4 189900 13830
5 195500 9978
9 189000 7500
10 175900 10000

350000 A :
12 180400 8402 g
300000 A
22 216000 7500 250000 -
0 ©
3 376162 12858 e e & e
8000 10000 12000 14000
47 320000 13650 o
55 216500 7851

&

185088 8577
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How do we represent h? (One popular choice)

h(x) = 6y + 61x1 is an affine function

size Price
x1) 12104  yWO | 400
x2) 12500 y | 900

An example prediction?

Notice the prediction is defined by the parameters 6y and 61. This
Is a huge reduction in the space of functions!



Simple Line Fit

SalePrice Lot.Area

4 189900 13830
5 195500 9978
9 189000 7500

10 175900 10000 o
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&
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Slightly More Interesting Data

We add features (bedrooms and lot size) to incorporate more
information about houses.
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Slightly More Interesting Data

We add features (bedrooms and lot size) to incorporate more
information about houses.

size bedrooms lot size Price
x(1) | 2104 4 45k yM | 400
x(2) | 2500 3 30k y®@ | 900

What's a prediction here?
h(X) = 0y + O1x1 + O>2x0 + O3x3.

With the convention that xg = 1 we can write:

3
h(x) =D 0ix
j=0



Vector Notation for Prediction

size bedrooms

lot size

Price

x(1)
x(2)

2104
2500

4
3

45k y 1 400
30k y®@ | 900

We write the vectors as (important notation)
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Vector Notation for Prediction

size bedrooms lot size Price
x(1) | 2104 4 45k y 1 400
x(2) | 2500 3 30k y®@ | 900

We write the vectors as (important notation)

(t0) o) (L1
01 and x(1) = i%l) _ [ 204 and y1) = 400

\zi ) \le) ) \ 445 )

We call 8 (or w) parameters, x\)is the input or the features, and
the output or target is y(). To be clear,

(x,y) is a training example and (x\), y{)) is the i example.

We have n examples (i.e., i = 1,...,n). There are d features so
xU) and @ are d + 1 dimensional (since xg = 1)



Visual version of linear regression

350000 -

300000 -

250000 -

200000 -

8000 10000 12000 14000
lot

Let hg(x) = 27:0 0;ix; want to choose 6 so that hg(x) ~ y.
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Visual version of linear regression: Learning

350000 -

300000 -

250000 -

200000 -

8000 10000 12000 14000
lot

Let hg(x) = Z}f:o 0;x; want to choose 6 so that hy(x) ~ y. One

popular idea called least squares
Sy = 1N () — )
()—2;(9@ )=y,

Choose
0 = argmin J(6).
0



Linear Regression Summary

» \We saw our first hypothesis class affine or linear functions.

» \We refreshed ourselves on notation and introduced
terminology like parameters, features, etc.

» We saw this paradigm that a “good” hypothesis is some how
one that is close to the data (objective function J).



Linear Regression Summary

» \We saw our first hypothesis class affine or linear functions.

» \We refreshed ourselves on notation and introduced
terminology like parameters, features, etc.

» We saw this paradigm that a “good” hypothesis is some how
one that is close to the data (objective function J).

» Next, we'll see how to solve these equations.



Solving the least squares optimization problem.



Gradient
Descent 3
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Gradient Descent

cJ@)=0-4)*+1

* Find the weight (value of 8) that
minimizes the loss ]

* J'(0) =7

e9=25

* given the current value of w,
adjusting 6 by an amount that has

the negative of the sign of 7'(9)
leads to a smaller value of /.
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Gradient Descent

cJ@)=0-4)*+1

* Find the weight (value of 8) that
minimizes the loss J

- J'(6) =7

e =25

* given the current value of w,
adjusting 8 by an amount that has

the negative of the sign of 7'(9)
leads to a smaller value of .

20 25 30 35 40 45 50 55

0

6.0




Gradient Descent

(%) =0

(t+1) o) O a) -



Gradient Descent Computation

(t+1) _ p(t) _ (t)
0; =0;" — 89J(9 ) forj=0,...,d.

Note that « is called the learning rate or step size.

Let's compute the derivatives. .

, 10
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Gradient Descent Computation

(t+1) _ p(t) _ (t)
0; =0;" — 89J(9 ) forj=0,...,d.

Note that « is called the learning rate or step size.

Let's compute the derivatives. .

, 10
00); J(e())_zzae (he( ) - ())

—Z (ho(x?) —y) 2 5 1)

For our particular hg we have:

0
hQ(X) = Ooxp + 01x1 + -+ + O4x4 so a—ehg(X) = Xj



Gradient Descent Computation

Thus, our update rule for component j can be written:
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Gradient Descent Computation

Thus, our update rule for component j can be written:

1 ! H H I
QJ(H ) — QJ(t) — ozz (he(x( )) — yl )) XJ( ).
=1

We write this in vector notation for j = 0,...,d as:
o+ = ) — 0" (hg(x(i)) _ y(i)) ()
i=1

Saves us a lot of writing! And easier to understand ... eventually.



Linear Classification: Mushroom and
Goats

color width height label

0 -0.311688 0.358501 0.936567 edible
1 -0.472327 0.817906 0.468387 poisonous

sign(w, * color + w,, * width + wy * height)

sign(0 * —0.472327 + 1 x 0.817906 — 1 % 0.468387) = sign(0.349519) = +1
sign(0 * —0.311688 + 1 * 0.358501 — 1 % 0.936567) = sign(—0.578066) = —1



Linear

Classification
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x1
0.048589
0.200023
1.595538
1.315929
1.087080
0.512235
0.265039
1.606480
0.977585
1.908708
2.503476

X2
1120275
0.956716
1.023582
1.452371
1.513219
1.594651
1.008506
1.571889
1.5650227
1.121259
3.002576

x2

45 |

40 1

35 1

3.0 1

45 -

2.0 -

15 1

10 4

=
B
e
. *
..
1 2
x1




Loss Function for Classification: O-1 Loss



Loss Function for Classification: 0-1 Loss

0 ifyxw-x>0
Lo . =
0-1(y, W - x) {1 otherwise



Loss Function for Classification: 0-1 Loss

0 ifysw-x>0
Ly ‘X)) =
0-1(y, W - X) {1 otherwise

Y .
Lo, = g 1
-1 o Loss
y=-1 0 1
y=1 1 0

1 [
0. ..........................................................

-1 0 1



Batch Versus Stochastic Minibatch: Motivation

Consider our update rule:
o+ = ) — 0" (hg(x(i)) _ y(i)) ()
i=1

» A single update, our rule examines all n data points.
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Batch Versus Stochastic Minibatch: Motivation

Consider our update rule:
o+ = ) — 0" (hg(x(i)) _ y(i)) ()
i=1

» A single update, our rule examines all n data points.

» In some modern applications (more later) n may be in the
billions or trillions!

» E.g., we try to “predict” every word on the web.

» Idea Sample a few points (maybe even just one!) to
approximate the gradient called Stochastic Gradient (SGD).

» SGD is the workhorse of modern ML, e.g., pytorch and
tensorflow.



Stochastic Minibatch

» We randomly select a batch of B C {1,..., n} where |B| < n.

» We approximate the gradient using just those B points as
follows (vs. gradient descent)

n

|_[13| ; (hg(X(j)) _ y(j)) MO %Z (hg(x(j)) _ y(j)) 0



Stochastic Minibatch

» We randomly select a batch of B C {1,..., n} where |B| < n.

» We approximate the gradient using just those B points as
follows (vs. gradient descent)

n

|_[13| ; (he(X(j)) _ y(j)) MO %Z (hg(x(j)) _ y(j)) )

j=1

> SO Our update rule for SGD |S Is':\tlérr{litﬂtaiggtesn%reusedforeach iteration, or epoch and then
o) — 90 — g " (he(xo)) _ yo)) <0,
JjeB

» NB: scaling of |B| versus nis “hidden” inside choice of ag.



Stochastic Minibatch vs. Gradient Descent

» Recall our rule B points as follows:

(t+1) _ g(t) _ bo(x0)Y — @) xG)
0 0 B 9( ) y

JjEB

» If |B] ={1,...,n} (the whole set), then they coincide.

» Smaller B implies a lower quality approximation of the
gradient (higher variance).

» Nevertheless, it may actually converge faster! (Case where the
dataset has many copies of the same point—extreme, but lots
of redundancy)



Stochastic Minibatch vs. Gradient Descent

» Recall our rule B points as follows:

o) = o) — 0§ (hH(X(j)) _ y(J)> NO)
JjeB
» If |B] ={1,...,n} (the whole set), then they coincide.

» Smaller B implies a lower quality approximation of the
gradient (higher variance).

» Nevertheless, it may actually converge faster! (Case where the
dataset has many copies of the same point—extreme, but lots
of redundancy)

» In practice, choose B proportional to what works well on
modern parallel hardware (GPUs).



Summary of this Subsection of Optimization

» Our goal was to optimize a loss function to find a good
predictor.

» We learned about gradient descent and the workhorse
algorithm for ML, Stochastic Gradient Descent (SGD).

» \We touched on the tradeoffs of choosing the right batch size.



Summary from Today

» We saw a lot of notation

» We learned about linear regression: the model, how to solve,
and more.

» We learned the workhorse algorithm for ML called SGD.

» Next time: Classification!



