
CMSC 478
KMA Solaiman

Supervised Learning: Linear Regression, 
Learning Algorithm and Gradient 

Descent

Slides are slightly adapted from Chris Re´, Stanford ML



Supervised Learning and Linear Regression

I Definitions
I Linear Regression
 Learning Algorithm
 Cost  Loss unction
 Gradient Descent

I Batch and Stochastic Gradient 



Supervised Learning

I A hypothesis or a prediction function is function h : X ! Y

I X is an image, and Y contains “cat” or “not.”
I X is a text snippet, and Y contains “hate speech” or “not.”
I X is house data, and Y could be the price.

I A training set is a set of pairs
�
(x (1), y (1)), . . . , (x (n), y (n))

s.t. x (i) 2 X and y (i) 2 Y for i = 1, . . . , n.
I Given a training set our goal is to produce a good prediction

function h
I Defining “good” will take us a bit. It’s a modeling question!
I We will want to use h on new data not in the training set.

I If Y is continuous, then called a regression problem.

I If Y is discrete, then called a classification problem.
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Our first example: Regression using Housing Data.



Example Data (Housing Prices from Ames Dataset from
Kaggle)



How do we represent h? (One popular choice)

h(x) = ✓0 + ✓1x1 is an a�ne function

size
x (1) 2104
x (2) 2500

Price
y (1) 400
y (2) 900

An example prediction?

Notice the prediction is defined by the parameters ✓0 and ✓1. This
is a huge reduction in the space of functions!
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Simple Line Fit



Slightly More Interesting Data

We add features (bedrooms and lot size) to incorporate more
information about houses.

size bedrooms lot size
x (1) 2104 4 45k
x (2) 2500 3 30k

Price
y (1) 400
y (2) 900

What’s a prediction here?

h(x) = ✓0 + ✓1x1 + ✓2x2 + ✓3x3.

With the convention that x0 = 1 we can write:

h(x) =
3X

j=0

✓jxj
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Vector Notation for Prediction

size bedrooms lot size
x (1) 2104 4 45k
x (2) 2500 3 30k

Price
y (1) 400
y (2) 900

We write the vectors as (important notation)

✓ =

0

BB@

✓0
✓1
✓2
✓3

1

CCA and x (1) =

0

BBB@

x (1)0

x (1)1

x (1)2

x (1)3

1

CCCA
=

0

BB@

1
2104
4
45

1

CCA and y (1) = 400

We call ✓ parameters, x (i) is the input or the features, and the
output or target is y (i). To be clear,

(x , y) is a training example and (x (i), y (i)) is the i th example.

We have n examples (i.e., i = 1, . . . , n). There are d features so
x (i) and ✓ are d + 1 dimensional (since x0 = 1)
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Visual version of linear regression

Let h✓(x) =
Pd

j=0 ✓jxj want to choose ✓ so that h✓(x) ⇡ y .

One
popular idea called least squares

J(✓) =
1

2

nX

i=1

⇣
h✓(x

(i))� y (i)
⌘2

.

Choose
✓ = argmin

✓
J(✓).



Fitting a 
good line
Animation



Visual version of linear regression: Learning

Let h✓(x) =
Pd

j=0 ✓jxj want to choose ✓ so that h✓(x) ⇡ y . One
popular idea called least squares

J(✓) =
1

2

nX

i=1

⇣
h✓(x

(i))� y (i)
⌘2

.

Choose
✓ = argmin

✓
J(✓).



Linear Regression Summary

I We saw our first hypothesis class a�ne or linear functions.

I We refreshed ourselves on notation and introduced
terminology like parameters, features, etc.

I We saw this paradigm that a “good” hypothesis is some how
one that is close to the data (objective function J).

I Next, we’ll see how to solve these equations.
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Solving the least squares optimization problem.



Gradient 
Descent
Animation



Gradient Descent

• ! " = " − 4 ! + 1	
• Find the weight (value of ") that 

minimizes the loss !
• !" " =	?
• " = 2.5
• given the current value of w, 

adjusting  "	 by an amount that has 
the negative of the sign of !′ "  
leads to a smaller value of !.

!
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Gradient Descent

✓(0) =0

✓(t+1)
j =✓(t)j � ↵

@

@✓j
J(✓(t)) for j = 0, . . . , d .



Gradient Descent Computation

✓(t+1)
j = ✓(t)j � ↵

@

@✓j
J(✓(t)) for j = 0, . . . , d .

Note that ↵ is called the learning rate or step size.

Let’s compute the derivatives. . .

@

@✓j
J(✓(t)) =

nX

i=1

1

2

@

@✓j

⇣
h✓(x

(i))� y (i)
⌘2

=
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘ @

@✓j
h✓(x

(i))

For our particular h✓ we have:

h✓(x) = ✓0x0 + ✓1x1 + · · ·+ ✓dxd so
@

@✓j
h✓(x) = xj
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Gradient Descent Computation

Thus, our update rule for component j can be written:

✓(t+1)
j = ✓(t)j � ↵

nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i)j .

We write this in vector notation for j = 0, . . . , d as:

✓(t+1) = ✓(t) � ↵
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i).

Saves us a lot of writing! And easier to understand . . . eventually.
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Linear Classification: Mushroom and 
Goats



Linear 
Classification



Loss Function for Classification: 0-1 Loss



Loss Function for Classification: 0-1 Loss



Loss Function for Classification: 0-1 Loss



Batch Versus Stochastic Minibatch: Motivation

Consider our update rule:

✓(t+1) = ✓(t) � ↵
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i).

I A single update, our rule examines all n data points.

I In some modern applications (more later) n may be in the
billions or trillions!
I E.g., we try to “predict” every word on the web.

I Idea Sample a few points (maybe even just one!) to
approximate the gradient called Stochastic Gradient (SGD).
I SGD is the workhorse of modern ML, e.g., pytorch and

tensorflow.
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Stochastic Minibatch

I We randomly select a batch of B ✓ {1, . . . , n} where |B | < n.

I We approximate the gradient using just those B points as
follows (vs. gradient descent)

1

|B |
X

j2B

⇣
h✓(x

(j))� y (j)
⌘
x (j) v.s.

1

n

nX

j=1

⇣
h✓(x

(j))� y (j)
⌘
x (j).

I So our update rule for SGD is:

✓(t+1) = ✓(t) � ↵B

X

j2B

⇣
h✓(x

(j))� y (j)
⌘
x (j).

I NB: scaling of |B | versus n is “hidden” inside choice of ↵B .
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All minibatches are used for each iteration, or epoch and then 
start the next one



Stochastic Minibatch vs. Gradient Descent

I Recall our rule B points as follows:

✓(t+1) = ✓(t) � ↵B

X

j2B

⇣
h✓(x

(j))� y (j)
⌘
x (j).

I If |B | = {1, . . . , n} (the whole set), then they coincide.

I Smaller B implies a lower quality approximation of the
gradient (higher variance).

I Nevertheless, it may actually converge faster! (Case where the
dataset has many copies of the same point–extreme, but lots
of redundancy)

I In practice, choose B proportional to what works well on
modern parallel hardware (GPUs).
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Summary of this Subsection of Optimization

I Our goal was to optimize a loss function to find a good
predictor.

I We learned about gradient descent and the workhorse
algorithm for ML, Stochastic Gradient Descent (SGD).

I We touched on the tradeo↵s of choosing the right batch size.



Summary from Today

I We saw a lot of notation

I We learned about linear regression: the model, how to solve,
and more.

I We learned the workhorse algorithm for ML called SGD.

I Next time: Classification!


