CMSC 478
 KMA Solaiman

Supervised Learning: Linear Regression,
 Learning Algorithm and Gradient Descent

Supervised Learning and Linear Regression

- Definitions
- Linear Regression
> Learning Algorithm
> Cost / Loss Function
$>$ Gradient Descent
- Batch and Stochastic Gradient

Supervised Learning

- A hypothesis or a prediction function is function $h: \mathcal{X} \rightarrow \mathcal{Y}$

Supervised Learning

- A hypothesis or a prediction function is function $h: \mathcal{X} \rightarrow \mathcal{Y}$
- \mathcal{X} is an image, and \mathcal{Y} contains "cat" or "not."
- \mathcal{X} is a text snippet, and \mathcal{Y} contains "hate speech" or "not."
- \mathcal{X} is house data, and \mathcal{Y} could be the price.

Supervised Learning

- A hypothesis or a prediction function is function $h: \mathcal{X} \rightarrow \mathcal{Y}$
- \mathcal{X} is an image, and \mathcal{Y} contains "cat" or "not."
- \mathcal{X} is a text snippet, and \mathcal{Y} contains "hate speech" or "not."
- \mathcal{X} is house data, and \mathcal{Y} could be the price.
- A training set is a set of pairs $\left\{\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(n)}, y^{(n)}\right)\right.$ s.t. $x^{(i)} \in \mathcal{X}$ and $y^{(i)} \in \mathcal{Y}$ for $i=1, \ldots, n$.

Supervised Learning

- A hypothesis or a prediction function is function $h: \mathcal{X} \rightarrow \mathcal{Y}$
- \mathcal{X} is an image, and \mathcal{Y} contains "cat" or "not."
- \mathcal{X} is a text snippet, and \mathcal{Y} contains "hate speech" or "not."
- \mathcal{X} is house data, and \mathcal{Y} could be the price.
- A training set is a set of pairs $\left\{\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(n)}, y^{(n)}\right)\right.$ s.t. $x^{(i)} \in \mathcal{X}$ and $y^{(i)} \in \mathcal{Y}$ for $i=1, \ldots, n$.
- Given a training set our goal is to produce a good prediction function h (orf)
- Defining "good" will take us a bit. It's a modeling question!
- We will want to use h on new data not in the training set.

Supervised Learning

- A hypothesis or a prediction function is function $h: \mathcal{X} \rightarrow \mathcal{Y}$
- \mathcal{X} is an image, and \mathcal{Y} contains "cat" or "not."
- \mathcal{X} is a text snippet, and \mathcal{Y} contains "hate speech" or "not."
- \mathcal{X} is house data, and \mathcal{Y} could be the price.
- A training set is a set of pairs $\left\{\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(n)}, y^{(n)}\right)\right.$ s.t. $x^{(i)} \in \mathcal{X}$ and $y^{(i)} \in \mathcal{Y}$ for $i=1, \ldots, n$.
- Given a training set our goal is to produce a good prediction function h (orf)
- Defining "good" will take us a bit. It's a modeling question!
- We will want to use h on new data not in the training set.
- If \mathcal{Y} is continuous, then called a regression problem.
- If \mathcal{Y} is discrete, then called a classification problem.

Our first example: Regression using Housing Data.

Example Data (Housing Prices from Ames Dataset from Kaggle)

	SalePrice	Lot.Area
$\mathbf{4}$	189900	13830
$\mathbf{5}$	195500	9978
$\mathbf{9}$	189000	7500
$\mathbf{1 0}$	175900	10000
$\mathbf{1 2}$	180400	8402
$\mathbf{2 2}$	216000	7500
$\mathbf{3 6}$	376162	12858
$\mathbf{4 7}$	320000	13650
$\mathbf{5 5}$	216500	7851
$\mathbf{5 6}$	185088	8577

How do we represent h ? (One popular choice)

$$
h(x)=\theta_{0}+\theta_{1} x_{1} \text { is an affine function }
$$

How do we represent h ? (One popular choice)

$$
h(x)=\theta_{0}+\theta_{1} x_{1} \text { is an affine function }
$$

	size		Price
$x^{(1)}$	2104		$y^{(1)}$
$x^{(2)}$	2500		$y^{(2)}$

How do we represent h ? (One popular choice)

$$
h(x)=\theta_{0}+\theta_{1} x_{1} \text { is an affine function }
$$

	size		
$x^{(1)}$	2104		Price
$x^{(2)}$	2500	$y^{(1)}$	400
$y^{(2)}$	900		

An example prediction?

How do we represent h ? (One popular choice)

$$
h(x)=\theta_{0}+\theta_{1} x_{1} \text { is an affine function }
$$

	size		
$x^{(1)}$	2104		Price
$x^{(2)}$	2500		$y^{(1)}$

An example prediction?

Notice the prediction is defined by the parameters θ_{0} and θ_{1}. This is a huge reduction in the space of functions!

Simple Line Fit

	SalePrice	Lot.Area	
4	189900	13830	
5	195500	9978	
9	189000	7500	
10	175900	10000	$350000-$
12	180400	8402	$300000-\longrightarrow$
22	216000	7500	250000 \bullet
36	376162	12858	
47	320000	13650	$8000 \begin{array}{ll}10000 \\ \text { lot } & 12000 \\ & 14000\end{array}$
55	216500	7851	
56	185088	8577	
58	222500	9505	

Slightly More Interesting Data

We add features (bedrooms and lot size) to incorporate more information about houses.

	size	bedrooms	lot size		Price
$x^{(1)}$	2104	4	45 k		$y^{(1)}$
$x^{(2)}$	2500	3	30 k	$y^{(2)}$	900

Slightly More Interesting Data

We add features (bedrooms and lot size) to incorporate more information about houses.

	size	bedrooms	lot size		Price
$x^{(1)}$	2104	4	$45 k$		$y^{(1)}$
$x^{(2)}$	2500	3	30 k		$y^{(2)}$

What's a prediction here?

$$
h(x)=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{3} x_{3} .
$$

Slightly More Interesting Data

We add features (bedrooms and lot size) to incorporate more information about houses.

	size	bedrooms	lot size		Price
$x^{(1)}$	2104	4	45 k		$y^{(1)}$
$x^{(2)}$	2500	3	30 k		$y^{(2)}$

What's a prediction here?

$$
h(x)=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{3} x_{3} .
$$

With the convention that $x_{0}=1$ we can write:

$$
h(x)=\sum_{j=0}^{3} \theta_{j} x_{j}
$$

Vector Notation for Prediction

	size	bedrooms	lot size		Price
$x^{(1)}$	2104	4	45 k		$y^{(1)}$
$x^{(2)}$	2500	3	30 k		$y^{(2)}$

We write the vectors as (important notation)

$$
\theta=\left(\begin{array}{l}
\theta_{0} \\
\theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{array}\right) \text { and } x^{(1)}=\left(\begin{array}{l}
x_{0}^{(1)} \\
x_{1}^{(1)} \\
x_{2}^{(1)} \\
x_{3}^{(1)}
\end{array}\right)=\left(\begin{array}{c}
1 \\
2104 \\
4 \\
45
\end{array}\right) \text { and } y^{(1)}=400
$$

Vector Notation for Prediction

	size	bedrooms	lot size		
	$x^{(1)}$	2104	4	45 k	
$y^{(1)}$	400				
$x^{(2)}$	2500	3	30 k		$y^{(2)}$

We write the vectors as (important notation)

$$
\theta=\left(\begin{array}{l}
\theta_{0} \\
\theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{array}\right) \text { and } x^{(1)}=\left(\begin{array}{l}
x_{0}^{(1)} \\
x_{1}^{(1)} \\
x_{2}^{(1)} \\
x_{3}^{(1)}
\end{array}\right)=\left(\begin{array}{c}
1 \\
2104 \\
4 \\
45
\end{array}\right) \text { and } y^{(1)}=400
$$

We call θ (or w) parameters, $x^{(i)}$ is the input or the features, and the output or target is $y^{(i)}$. To be clear,
(x, y) is a training example and $\left(x^{(i)}, y^{(i)}\right)$ is the $i^{t h}$ example.

Vector Notation for Prediction

	size	bedrooms	lot size		Price
$x^{(1)}$	2104	4	45 k		$y^{(1)}$
$x^{(2)}$	2500	3	30 k		$y^{(2)}$

We write the vectors as (important notation)

$$
\theta=\left(\begin{array}{l}
\theta_{0} \\
\theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{array}\right) \text { and } x^{(1)}=\left(\begin{array}{l}
x_{0}^{(1)} \\
x_{1}^{(1)} \\
x_{2}^{(1)} \\
x_{3}^{(1)}
\end{array}\right)=\left(\begin{array}{c}
1 \\
2104 \\
4 \\
45
\end{array}\right) \text { and } y^{(1)}=400
$$

We call θ (or w) parameters, $x^{(i)}$ is the input or the features, and the output or target is $y^{(i)}$. To be clear,
(x, y) is a training example and $\left(x^{(i)}, y^{(i)}\right)$ is the $i^{t h}$ example.
We have n examples (i.e., $i=1, \ldots, n$). There are d features so $x^{(i)}$ and θ are $d+1$ dimensional (since $x_{0}=1$)

Visual version of linear regression

Let $h_{\theta}(x)=\sum_{j=0}^{d} \theta_{j} x_{j}$ want to choose θ so that $h_{\theta}(x) \approx y$.

Fitting a good line

Animation

Visual version of linear regression: Learning

Let $h_{\theta}(x)=\sum_{j=0}^{d} \theta_{j} x_{j}$ want to choose θ so that $h_{\theta}(x) \approx y$. One popular idea called least squares

$$
J(\theta)=\frac{1}{2} \sum_{i=1}^{n}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2} .
$$

Choose

$$
\theta=\underset{o}{\operatorname{argmin}} J(\theta) .
$$

Linear Regression Summary

- We saw our first hypothesis class affine or linear functions.
- We refreshed ourselves on notation and introduced terminology like parameters, features, etc.
- We saw this paradigm that a "good" hypothesis is some how one that is close to the data (objective function J).

Linear Regression Summary

- We saw our first hypothesis class affine or linear functions.
- We refreshed ourselves on notation and introduced terminology like parameters, features, etc.
- We saw this paradigm that a "good" hypothesis is some how one that is close to the data (objective function J).
- Next, we'll see how to solve these equations.

Solving the least squares optimization problem.

Gradient Descent

Animation

Gradient Descent

- $\mathcal{J}(\theta)=(\theta-4)^{2}+1$
- Find the weight (value of θ) that minimizes the loss \mathcal{J}
- $\mathcal{J}^{\prime}(\theta)=$?
- $\theta=2.5$
- given the current value of w, adjusting θ by an amount that has the negative of the sign of $\mathcal{J}^{\prime}(\theta)$
 leads to a smaller value of \mathcal{J}.

Gradient Descent

- $\mathcal{J}(\theta)=(\theta-4)^{2}+1$
- Find the weight (value of θ) that minimizes the loss J
- $\mathcal{J}^{\prime}(\theta)=$?
- $\theta=2.5$
- given the current value of w, adjusting θ by an amount that has the negative of the sign of $\mathcal{J}^{\prime}(\theta)$ leads to a smaller value of \mathcal{J}.

$\theta=\theta-\alpha * \mathcal{J}^{\prime}(\theta)$

Gradient Descent

$$
\begin{aligned}
\theta^{(0)} & =0 \\
\theta_{j}^{(t+1)} & =\theta_{j}^{(t)}-\alpha \frac{\partial}{\partial \theta_{j}} J\left(\theta^{(t)}\right) \quad \text { for } j=0, \ldots, d .
\end{aligned}
$$

Gradient Descent Computation

$$
\theta_{j}^{(t+1)}=\theta_{j}^{(t)}-\alpha \frac{\partial}{\partial \theta_{j}} J\left(\theta^{(t)}\right) \text { for } j=0, \ldots, d .
$$

Note that α is called the learning rate or step size.

Let's compute the derivatives...

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{j}} J\left(\theta^{(t)}\right) & =\sum_{i=1}^{n} \frac{1}{2} \frac{\partial}{\partial \theta_{j}}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2} \\
& =\sum_{i=1}^{n}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) \frac{\partial}{\partial \theta_{j}} h_{\theta}\left(x^{(i)}\right)
\end{aligned}
$$

Gradient Descent Computation

$$
\theta_{j}^{(t+1)}=\theta_{j}^{(t)}-\alpha \frac{\partial}{\partial \theta_{j}} J\left(\theta^{(t)}\right) \text { for } j=0, \ldots, d
$$

Note that α is called the learning rate or step size.

Let's compute the derivatives...

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{j}} J\left(\theta^{(t)}\right) & =\sum_{i=1}^{n} \frac{1}{2} \frac{\partial}{\partial \theta_{j}}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2} \\
& =\sum_{i=1}^{n}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) \frac{\partial}{\partial \theta_{j}} h_{\theta}\left(x^{(i)}\right)
\end{aligned}
$$

For our particular h_{θ} we have:

$$
h_{\theta}(x)=\theta_{0} x_{0}+\theta_{1} x_{1}+\cdots+\theta_{d} x_{d} \text { so } \frac{\partial}{\partial \theta_{j}} h_{\theta}(x)=x_{j}
$$

Gradient Descent Computation

Thus, our update rule for component j can be written:

$$
\theta_{j}^{(t+1)}=\theta_{j}^{(t)}-\alpha \sum_{i=1}^{n}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}
$$

Gradient Descent Computation

Thus, our update rule for component j can be written:

$$
\theta_{j}^{(t+1)}=\theta_{j}^{(t)}-\alpha \sum_{i=1}^{n}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}
$$

We write this in vector notation for $j=0, \ldots, d$ as:

$$
\theta^{(t+1)}=\theta^{(t)}-\alpha \sum_{i=1}^{n}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x^{(i)} .
$$

Saves us a lot of writing! And easier to understand ... eventually.

Linear Classification: Mushroom and Goats

color
 width
 height
 label

0	-0.311688	0.358501	0.936567	edible
1	-0.472327	0.817906	0.468387	poisonous
$\operatorname{sign}\left(w_{c} * \operatorname{color}+w_{w} *\right.$ width $+w_{h} *$ height $)$				
$\operatorname{sign}(0 *-0.472327+1 * 0.817906-1 * 0.468387)=\operatorname{sign}(0.349519)=+1$				
$\operatorname{sign}(0 *-0.31688+1 * 0.358501-1 * 0.936567)=\operatorname{sign}(-0.578066)=-1$				

Loss Function for Classification: 0-1 Loss

	\hat{y} L_{0-1} $=$ -1	\hat{y} $=1$
$y=-1$	0	1
$y=1$	1	0

Loss Function for Classification: 0-1 Loss

$$
\left.\begin{array}{lll}
& & L_{0-1}(y, \mathbf{w} \cdot \mathbf{x})= \begin{cases}0 & \text { if } y * \mathbf{w} \cdot \mathbf{x}>0 \\
1 & \text { otherwise }\end{cases} \\
\begin{array}{lll}
L_{0-1} & \stackrel{\hat{y}}{=} \\
-1
\end{array} & \begin{array}{l}
=1
\end{array} \\
y=-1 & 0 & 1
\end{array}\right\}
$$

Loss Function for Classification: 0-1 Loss

Batch Versus Stochastic Minibatch: Motivation

Consider our update rule:

$$
\theta^{(t+1)}=\theta^{(t)}-\alpha \sum_{i=1}^{n}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x^{(i)}
$$

- A single update, our rule examines all n data points.

Batch Versus Stochastic Minibatch: Motivation

Consider our update rule:

$$
\theta^{(t+1)}=\theta^{(t)}-\alpha \sum_{i=1}^{n}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x^{(i)} .
$$

- A single update, our rule examines all n data points.
- In some modern applications (more later) n may be in the billions or trillions!
- E.g., we try to "predict" every word on the web.

Batch Versus Stochastic Minibatch: Motivation

Consider our update rule:

$$
\theta^{(t+1)}=\theta^{(t)}-\alpha \sum_{i=1}^{n}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x^{(i)} .
$$

- A single update, our rule examines all n data points.
- In some modern applications (more later) n may be in the billions or trillions!
- E.g., we try to "predict" every word on the web.
- Idea Sample a few points (maybe even just one!) to approximate the gradient called Stochastic Gradient (SGD).
- SGD is the workhorse of modern ML, e.g., pytorch and tensorflow.

Stochastic Minibatch

- We randomly select a batch of $B \subseteq\{1, \ldots, n\}$ where $|B|<n$.
- We approximate the gradient using just those B points as follows (vs. gradient descent)

$$
\frac{1}{|B|} \sum_{j \in B}\left(h_{\theta}\left(x^{(j)}\right)-y^{(j)}\right) x^{(j)} \text { v.s. } \frac{1}{n} \sum_{j=1}^{n}\left(h_{\theta}\left(x^{(j)}\right)-y^{(j)}\right) x^{(j)}
$$

Stochastic Minibatch

- We randomly select a batch of $B \subseteq\{1, \ldots, n\}$ where $|B|<n$.
- We approximate the gradient using just those B points as follows (vs. gradient descent)

$$
\frac{1}{|B|} \sum_{j \in B}\left(h_{\theta}\left(x^{(j)}\right)-y^{(j)}\right) x^{(j)} \text { v.s. } \frac{1}{n} \sum_{j=1}^{n}\left(h_{\theta}\left(x^{(j)}\right)-y^{(j)}\right) x^{(j)} .
$$

- So our update rule for SGD is:

$$
\theta^{(t+1)}=\theta^{(t)}-\alpha_{B} \sum_{j \in B}\left(h_{\theta}\left(x^{(j)}\right)-y^{(j)}\right) x^{(j)} .
$$

- NB: scaling of $|B|$ versus n is "hidden" inside choice of α_{B}.

Stochastic Minibatch vs. Gradient Descent

- Recall our rule B points as follows:

$$
\theta^{(t+1)}=\theta^{(t)}-\alpha_{B} \sum_{j \in B}\left(h_{\theta}\left(x^{(j)}\right)-y^{(j)}\right) x^{(j)} .
$$

- If $|B|=\{1, \ldots, n\}$ (the whole set), then they coincide.
- Smaller B implies a lower quality approximation of the gradient (higher variance).
- Nevertheless, it may actually converge faster! (Case where the dataset has many copies of the same point-extreme, but lots of redundancy)

Stochastic Minibatch vs. Gradient Descent

- Recall our rule B points as follows:

$$
\theta^{(t+1)}=\theta^{(t)}-\alpha_{B} \sum_{j \in B}\left(h_{\theta}\left(x^{(j)}\right)-y^{(j)}\right) x^{(j)} .
$$

- If $|B|=\{1, \ldots, n\}$ (the whole set), then they coincide.
- Smaller B implies a lower quality approximation of the gradient (higher variance).
- Nevertheless, it may actually converge faster! (Case where the dataset has many copies of the same point-extreme, but lots of redundancy)
- In practice, choose B proportional to what works well on modern parallel hardware (GPUs).

Summary of this Subsection of Optimization

－Our goal was to optimize a loss function to find a good predictor．
－We learned about gradient descent and the workhorse algorithm for ML，Stochastic Gradient Descent（SGD）．
－We touched on the tradeoffs of choosing the right batch size．

Summary from Today

- We saw a lot of notation
- We learned about linear regression: the model, how to solve, and more.
- We learned the workhorse algorithm for ML called SGD.
- Next time: Classification!

