
CMSC 478
KMA Solaiman

Supervised Learning: Linear Regression,
Learning Algorithm and Gradient

Descent

Slides are slightly adapted from Chris Re´, Stanford ML

Supervised Learning and Linear Regression

I Definitions
I Linear Regression
 Learning Algorithm
 Cost Loss unction
 Gradient Descent

I Batch and Stochastic Gradient

Supervised Learning

I A hypothesis or a prediction function is function h : X ! Y

I X is an image, and Y contains “cat” or “not.”
I X is a text snippet, and Y contains “hate speech” or “not.”
I X is house data, and Y could be the price.

I A training set is a set of pairs
�
(x (1), y (1)), . . . , (x (n), y (n))

s.t. x (i) 2 X and y (i) 2 Y for i = 1, . . . , n.
I Given a training set our goal is to produce a good prediction

function h
I Defining “good” will take us a bit. It’s a modeling question!
I We will want to use h on new data not in the training set.

I If Y is continuous, then called a regression problem.

I If Y is discrete, then called a classification problem.

Supervised Learning

I A hypothesis or a prediction function is function h : X ! Y
I X is an image, and Y contains “cat” or “not.”
I X is a text snippet, and Y contains “hate speech” or “not.”
I X is house data, and Y could be the price.

I A training set is a set of pairs
�
(x (1), y (1)), . . . , (x (n), y (n))

s.t. x (i) 2 X and y (i) 2 Y for i = 1, . . . , n.
I Given a training set our goal is to produce a good prediction

function h
I Defining “good” will take us a bit. It’s a modeling question!
I We will want to use h on new data not in the training set.

I If Y is continuous, then called a regression problem.

I If Y is discrete, then called a classification problem.

Supervised Learning

I A hypothesis or a prediction function is function h : X ! Y
I X is an image, and Y contains “cat” or “not.”
I X is a text snippet, and Y contains “hate speech” or “not.”
I X is house data, and Y could be the price.

I A training set is a set of pairs
�
(x (1), y (1)), . . . , (x (n), y (n))

s.t. x (i) 2 X and y (i) 2 Y for i = 1, . . . , n.

I Given a training set our goal is to produce a good prediction
function h
I Defining “good” will take us a bit. It’s a modeling question!
I We will want to use h on new data not in the training set.

I If Y is continuous, then called a regression problem.

I If Y is discrete, then called a classification problem.

Supervised Learning

I A hypothesis or a prediction function is function h : X ! Y
I X is an image, and Y contains “cat” or “not.”
I X is a text snippet, and Y contains “hate speech” or “not.”
I X is house data, and Y could be the price.

I A training set is a set of pairs
�
(x (1), y (1)), . . . , (x (n), y (n))

s.t. x (i) 2 X and y (i) 2 Y for i = 1, . . . , n.
I Given a training set our goal is to produce a good prediction

function h (or f)
I Defining “good” will take us a bit. It’s a modeling question!
I We will want to use h on new data not in the training set.

I If Y is continuous, then called a regression problem.

I If Y is discrete, then called a classification problem.

Supervised Learning

I A hypothesis or a prediction function is function h : X ! Y
I X is an image, and Y contains “cat” or “not.”
I X is a text snippet, and Y contains “hate speech” or “not.”
I X is house data, and Y could be the price.

I A training set is a set of pairs
�
(x (1), y (1)), . . . , (x (n), y (n))

s.t. x (i) 2 X and y (i) 2 Y for i = 1, . . . , n.
I Given a training set our goal is to produce a good prediction

function h or
I Defining “good” will take us a bit. It’s a modeling question!
I We will want to use h on new data not in the training set.

I If Y is continuous, then called a regression problem.

I If Y is discrete, then called a classification problem.

Our first example: Regression using Housing Data.

Example Data (Housing Prices from Ames Dataset from
Kaggle)

How do we represent h? (One popular choice)

h(x) = ✓0 + ✓1x1 is an a�ne function

size
x (1) 2104
x (2) 2500

Price
y (1) 400
y (2) 900

An example prediction?

Notice the prediction is defined by the parameters ✓0 and ✓1. This
is a huge reduction in the space of functions!

How do we represent h? (One popular choice)

h(x) = ✓0 + ✓1x1 is an a�ne function

size
x (1) 2104
x (2) 2500

Price
y (1) 400
y (2) 900

An example prediction?

Notice the prediction is defined by the parameters ✓0 and ✓1. This
is a huge reduction in the space of functions!

How do we represent h? (One popular choice)

h(x) = ✓0 + ✓1x1 is an a�ne function

size
x (1) 2104
x (2) 2500

Price
y (1) 400
y (2) 900

An example prediction?

Notice the prediction is defined by the parameters ✓0 and ✓1. This
is a huge reduction in the space of functions!

How do we represent h? (One popular choice)

h(x) = ✓0 + ✓1x1 is an a�ne function

size
x (1) 2104
x (2) 2500

Price
y (1) 400
y (2) 900

An example prediction?

Notice the prediction is defined by the parameters ✓0 and ✓1. This
is a huge reduction in the space of functions!

Simple Line Fit

Slightly More Interesting Data

We add features (bedrooms and lot size) to incorporate more
information about houses.

size bedrooms lot size
x (1) 2104 4 45k
x (2) 2500 3 30k

Price
y (1) 400
y (2) 900

What’s a prediction here?

h(x) = ✓0 + ✓1x1 + ✓2x2 + ✓3x3.

With the convention that x0 = 1 we can write:

h(x) =
3X

j=0

✓jxj

Slightly More Interesting Data

We add features (bedrooms and lot size) to incorporate more
information about houses.

size bedrooms lot size
x (1) 2104 4 45k
x (2) 2500 3 30k

Price
y (1) 400
y (2) 900

What’s a prediction here?

h(x) = ✓0 + ✓1x1 + ✓2x2 + ✓3x3.

With the convention that x0 = 1 we can write:

h(x) =
3X

j=0

✓jxj

Slightly More Interesting Data

We add features (bedrooms and lot size) to incorporate more
information about houses.

size bedrooms lot size
x (1) 2104 4 45k
x (2) 2500 3 30k

Price
y (1) 400
y (2) 900

What’s a prediction here?

h(x) = ✓0 + ✓1x1 + ✓2x2 + ✓3x3.

With the convention that x0 = 1 we can write:

h(x) =
3X

j=0

✓jxj

Vector Notation for Prediction

size bedrooms lot size
x (1) 2104 4 45k
x (2) 2500 3 30k

Price
y (1) 400
y (2) 900

We write the vectors as (important notation)

✓ =

0

BB@

✓0
✓1
✓2
✓3

1

CCA and x (1) =

0

BBB@

x (1)0

x (1)1

x (1)2

x (1)3

1

CCCA
=

0

BB@

1
2104
4
45

1

CCA and y (1) = 400

We call ✓ parameters, x (i) is the input or the features, and the
output or target is y (i). To be clear,

(x , y) is a training example and (x (i), y (i)) is the i th example.

We have n examples (i.e., i = 1, . . . , n). There are d features so
x (i) and ✓ are d + 1 dimensional (since x0 = 1)

Vector Notation for Prediction

size bedrooms lot size
x (1) 2104 4 45k
x (2) 2500 3 30k

Price
y (1) 400
y (2) 900

We write the vectors as (important notation)

✓ =

0

BB@

✓0
✓1
✓2
✓3

1

CCA and x (1) =

0

BBB@

x (1)0

x (1)1

x (1)2

x (1)3

1

CCCA
=

0

BB@

1
2104
4
45

1

CCA and y (1) = 400

We call ✓ or parameters, x (i) is the input or the features, and
the output or target is y (i). To be clear,

(x , y) is a training example and (x (i), y (i)) is the i th example.

We have n examples (i.e., i = 1, . . . , n). There are d features so
x (i) and ✓ are d + 1 dimensional (since x0 = 1)

Vector Notation for Prediction

size bedrooms lot size
x (1) 2104 4 45k
x (2) 2500 3 30k

Price
y (1) 400
y (2) 900

We write the vectors as (important notation)

✓ =

0

BB@

✓0
✓1
✓2
✓3

1

CCA and x (1) =

0

BBB@

x (1)0

x (1)1

x (1)2

x (1)3

1

CCCA
=

0

BB@

1
2104
4
45

1

CCA and y (1) = 400

We call ✓ or) parameters, x (i) is the input or the features, and
the output or target is y (i). To be clear,

(x , y) is a training example and (x (i), y (i)) is the i th example.

We have n examples (i.e., i = 1, . . . , n). There are d features so
x (i) and ✓ are d + 1 dimensional (since x0 = 1)

Visual version of linear regression

Let h✓(x) =
Pd

j=0 ✓jxj want to choose ✓ so that h✓(x) ⇡ y .

One
popular idea called least squares

J(✓) =
1

2

nX

i=1

⇣
h✓(x

(i))� y (i)
⌘2

.

Choose
✓ = argmin

✓
J(✓).

Fitting a
good line
Animation

Visual version of linear regression: Learning

Let h✓(x) =
Pd

j=0 ✓jxj want to choose ✓ so that h✓(x) ⇡ y . One
popular idea called least squares

J(✓) =
1

2

nX

i=1

⇣
h✓(x

(i))� y (i)
⌘2

.

Choose
✓ = argmin

✓
J(✓).

Linear Regression Summary

I We saw our first hypothesis class a�ne or linear functions.

I We refreshed ourselves on notation and introduced
terminology like parameters, features, etc.

I We saw this paradigm that a “good” hypothesis is some how
one that is close to the data (objective function J).

I Next, we’ll see how to solve these equations.

Linear Regression Summary

I We saw our first hypothesis class a�ne or linear functions.

I We refreshed ourselves on notation and introduced
terminology like parameters, features, etc.

I We saw this paradigm that a “good” hypothesis is some how
one that is close to the data (objective function J).

I Next, we’ll see how to solve these equations.

Solving the least squares optimization problem.

Gradient
Descent
Animation

Gradient Descent

• ! " = " − 4 ! + 1	
• Find the weight (value of ") that

minimizes the loss !
• !" " =	?
• " = 2.5
• given the current value of w,

adjusting "	 by an amount that has
the negative of the sign of !′ "
leads to a smaller value of !.

!

Gradient Descent

• ! " = " − 4 ! + 1	
• Find the weight (value of ") that

minimizes the loss J
• !" " =	?
• " = 2.5
• given the current value of w,

adjusting "	 by an amount that has
the negative of the sign of !′ "
leads to a smaller value of !.

!

" = "	 − +	 ∗ !′ "

Gradient Descent

✓(0) =0

✓(t+1)
j =✓(t)j � ↵

@

@✓j
J(✓(t)) for j = 0, . . . , d .

Gradient Descent Computation

✓(t+1)
j = ✓(t)j � ↵

@

@✓j
J(✓(t)) for j = 0, . . . , d .

Note that ↵ is called the learning rate or step size.

Let’s compute the derivatives. . .

@

@✓j
J(✓(t)) =

nX

i=1

1

2

@

@✓j

⇣
h✓(x

(i))� y (i)
⌘2

=
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘ @

@✓j
h✓(x

(i))

For our particular h✓ we have:

h✓(x) = ✓0x0 + ✓1x1 + · · ·+ ✓dxd so
@

@✓j
h✓(x) = xj

Gradient Descent Computation

✓(t+1)
j = ✓(t)j � ↵

@

@✓j
J(✓(t)) for j = 0, . . . , d .

Note that ↵ is called the learning rate or step size.

Let’s compute the derivatives. . .

@

@✓j
J(✓(t)) =

nX

i=1

1

2

@

@✓j

⇣
h✓(x

(i))� y (i)
⌘2

=
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘ @

@✓j
h✓(x

(i))

For our particular h✓ we have:

h✓(x) = ✓0x0 + ✓1x1 + · · ·+ ✓dxd so
@

@✓j
h✓(x) = xj

Gradient Descent Computation

Thus, our update rule for component j can be written:

✓(t+1)
j = ✓(t)j � ↵

nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i)j .

We write this in vector notation for j = 0, . . . , d as:

✓(t+1) = ✓(t) � ↵
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i).

Saves us a lot of writing! And easier to understand . . . eventually.

Gradient Descent Computation

Thus, our update rule for component j can be written:

✓(t+1)
j = ✓(t)j � ↵

nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i)j .

We write this in vector notation for j = 0, . . . , d as:

✓(t+1) = ✓(t) � ↵
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i).

Saves us a lot of writing! And easier to understand . . . eventually.

Linear Classification: Mushroom and
Goats

Linear
Classification

Loss Function for Classification: 0-1 Loss

Loss Function for Classification: 0-1 Loss

Loss Function for Classification: 0-1 Loss

Batch Versus Stochastic Minibatch: Motivation

Consider our update rule:

✓(t+1) = ✓(t) � ↵
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i).

I A single update, our rule examines all n data points.

I In some modern applications (more later) n may be in the
billions or trillions!
I E.g., we try to “predict” every word on the web.

I Idea Sample a few points (maybe even just one!) to
approximate the gradient called Stochastic Gradient (SGD).
I SGD is the workhorse of modern ML, e.g., pytorch and

tensorflow.

Batch Versus Stochastic Minibatch: Motivation

Consider our update rule:

✓(t+1) = ✓(t) � ↵
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i).

I A single update, our rule examines all n data points.
I In some modern applications (more later) n may be in the

billions or trillions!
I E.g., we try to “predict” every word on the web.

I Idea Sample a few points (maybe even just one!) to
approximate the gradient called Stochastic Gradient (SGD).
I SGD is the workhorse of modern ML, e.g., pytorch and

tensorflow.

Batch Versus Stochastic Minibatch: Motivation

Consider our update rule:

✓(t+1) = ✓(t) � ↵
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i).

I A single update, our rule examines all n data points.
I In some modern applications (more later) n may be in the

billions or trillions!
I E.g., we try to “predict” every word on the web.

I Idea Sample a few points (maybe even just one!) to
approximate the gradient called Stochastic Gradient (SGD).
I SGD is the workhorse of modern ML, e.g., pytorch and

tensorflow.

Stochastic Minibatch

I We randomly select a batch of B ✓ {1, . . . , n} where |B | < n.

I We approximate the gradient using just those B points as
follows (vs. gradient descent)

1

|B |
X

j2B

⇣
h✓(x

(j))� y (j)
⌘
x (j) v.s.

1

n

nX

j=1

⇣
h✓(x

(j))� y (j)
⌘
x (j).

I So our update rule for SGD is:

✓(t+1) = ✓(t) � ↵B

X

j2B

⇣
h✓(x

(j))� y (j)
⌘
x (j).

I NB: scaling of |B | versus n is “hidden” inside choice of ↵B .

Stochastic Minibatch

I We randomly select a batch of B ✓ {1, . . . , n} where |B | < n.

I We approximate the gradient using just those B points as
follows (vs. gradient descent)

1

|B |
X

j2B

⇣
h✓(x

(j))� y (j)
⌘
x (j) v.s.

1

n

nX

j=1

⇣
h✓(x

(j))� y (j)
⌘
x (j).

I So our update rule for SGD is:

✓(t+1) = ✓(t) � ↵B

X

j2B

⇣
h✓(x

(j))� y (j)
⌘
x (j).

I NB: scaling of |B | versus n is “hidden” inside choice of ↵B .

All minibatches are used for each iteration, or epoch and then
start the next one

Stochastic Minibatch vs. Gradient Descent

I Recall our rule B points as follows:

✓(t+1) = ✓(t) � ↵B

X

j2B

⇣
h✓(x

(j))� y (j)
⌘
x (j).

I If |B | = {1, . . . , n} (the whole set), then they coincide.

I Smaller B implies a lower quality approximation of the
gradient (higher variance).

I Nevertheless, it may actually converge faster! (Case where the
dataset has many copies of the same point–extreme, but lots
of redundancy)

I In practice, choose B proportional to what works well on
modern parallel hardware (GPUs).

Stochastic Minibatch vs. Gradient Descent

I Recall our rule B points as follows:

✓(t+1) = ✓(t) � ↵B

X

j2B

⇣
h✓(x

(j))� y (j)
⌘
x (j).

I If |B | = {1, . . . , n} (the whole set), then they coincide.

I Smaller B implies a lower quality approximation of the
gradient (higher variance).

I Nevertheless, it may actually converge faster! (Case where the
dataset has many copies of the same point–extreme, but lots
of redundancy)

I In practice, choose B proportional to what works well on
modern parallel hardware (GPUs).

Summary of this Subsection of Optimization

I Our goal was to optimize a loss function to find a good
predictor.

I We learned about gradient descent and the workhorse
algorithm for ML, Stochastic Gradient Descent (SGD).

I We touched on the tradeo↵s of choosing the right batch size.

Summary from Today

I We saw a lot of notation

I We learned about linear regression: the model, how to solve,
and more.

I We learned the workhorse algorithm for ML called SGD.

I Next time: Classification!

