CMSC 478 Intro. to Machine Learning Spring 2024

KMA Solaiman

ksolaima@umbc.edu

Instructor: KMA Solaiman (Salvi)

ITE 201C/Remote <u>ksolaima@umbc.edu</u> Wed 5:45 - 6:30 pm, Thu 3 - 3:45 pm by appointment

- Multimodal Information Retrieval
- Vision & language processing
- Learning with low-to-no supervision
- Novelties in Learning Models

Administrivia

Course Website

WWW

Schedule, slides, assignments, readings, materials, syllabus here

https://umbc-cmsc478.github.io/spring2024/

- **Course announcements,** Q&A, discussion board here
- No public code, follow posted rules and etiquette
- Assignment Submission
- Rubrics Grading
- Peer Grading

Text

- No specific text
- Hal Duame, CIML
- Tom Mitechell
- Lecture Notes
- Website

Academic Integrity

- Super important: I take it *very* seriously
- You are responsible for your (& your group's) own work: if in doubt, ask!
- Penalties could include 0 on the assignment, course failure, suspension, or expulsion (not exhaustive)

Final Grades

2	Letter
90	А
80	В
70	С
60	D
0	F

Programming Languages for Assignments

Python, though individual assignments could vary

Remember: programming languages are *tools*. Don't get too caught up in not "knowing" a language. This course will not be grading software engineering prowess.

Libraries: Assignment dependent. Generally OK, as long as you don't use their implementation of what you need to implement

Courtesy: Frank Ferraro

Late Policy

If you have them left: assignments turned in after the deadline will be graded and recorded, no questions asked

Late Policy

If you have them left: assignments turned in after the deadline will be graded and recorded, no questions asked

If you don't have any left: still turn assignments in. They could count in your favor in borderline cases

Late Policy

Use them as needed throughout the course They're meant for personal reasons and **emergencies**

Do not procrastinate

Late Policy

Contact me privately if an extended absence will occur

<u>You</u> must know how many you've used

Definition of Machine Learning

Arthur Samuel (1959): Machine Learning is the field of study that gives the computer the ability to learn without being explicitly programmed.

A. L. Samuel^{*}

Some Studies in Machine Learning Using the Game of Checkers. II—Recent Progress

Definition of Machine Learning

Tom Mitchell (1998): a computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Experience (data): games played by the program (with itself)

Performance measure: winning rate

Taxonomy of Machine Learning (A Simplistic View Based on Tasks)

can also be viewed as tools/methods

Supervised Learning

Housing Price Prediction

> Given: a dataset that contains n samples

$$(x^{(1)}, y^{(1)}), ... (x^{(n)}, y^{(n)})$$

 \succ Task: if a residence has x square feet, predict its price?

Housing Price Prediction

> Given: a dataset that contains n samples $(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)})$

Lecture 2&3: fitting linear/ qaudratic functions to the dataset

More Features

Suppose we also know the lot size

Task: find a function that maps

High-dimensional Features

Lecture 6-7: infinite dimensional features

Lecture 10: select features based on the data

Regression vs Classification

- ➢ regression: if y ∈ ℝ is a continuous variable
 ➢ e.g., price prediction
- Classification: the label is a discrete variable
 - > e.g., the task of predicting the types of residence

(size, lot size) \rightarrow house or townhouse?

Supervised Learning in Computer Vision

Image Classification

> x = raw pixels of the image, y = the main object

ImageNet Large Scale Visual Recognition Challenge. Russakovsky et al.'2015

Supervised Learning in Computer Vision

> Object localization and detection

> x = raw pixels of the image, y = the bounding boxes

kit fox

croquette

airplane

frog

ImageNet Large Scale Visual Recognition Challenge. Russakovsky et al. 2015

Supervised Learning in Natural Language Processing

Machine translation

Google Translate

Note: this course only covers the basic and fundamental techniques of supervised learning

Unsupervised Learning

Unsupervised Learning

- > Dataset contains no labels: $x^{(1)}$, ... $x^{(n)}$
- Goal (vaguely-posed): to find interesting structures in the data

Clustering

Clustering

Lecture 12&13: k-mean clustering, mixture of Gaussians

Clustering Genes

Cluster 1

Individuals

Identifying Regulatory Mechanisms using Individual Variation Reveals Key Role for Chromatin Modification. [Su-In Lee, Dana Pe'er, Aimee M. Dudley, George M. Church and Daphne Koller. '06]

Latent Semantic Analysis (LSA) documents

Lecture 14: principal component analysis (tools used in LSA)

Image credit: https://commons.wikimedia.org/wiki/File:Topic_ detection in a document-word matrix.gif

Word Embeddings

Unlabeled dataset

Represent words by vectors

Word2vec [Mikolov et al'13] GloVe [Pennington et al'14]

Clustering Words with Similar Meanings (Hierarchically)

	logic	graph	boson	polyester	acids
	deductive	subgraph	massless	polypropylene	amino
	propositional	bipartite	particle	resins	biosynthesis
	semantics	vertex	higgs	epoxy	peptide
tag	logic	graph theory	particle physics	polymer	biochemistry

[Arora-Ge-Liang-M.-Risteski, TACL'17,18]

Large Language Models (Lecture 16)

machine learning models for language learnt on largescale language datasets

> can be used for many purposes

to science.

10 TRIES)

SYSTEM PROMPT
(HUMAN-WRITTEN)In a shocking finding, scientist discovered a herd of unicorns living in a remote,
previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.MODEL COMPLETION
(MACHINE-WRITTEN,The scientist named the population, after their distinctive horn, 0vid's
Unicorn. These four-horned, silver-white unicorns were previously unknown

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. "By the time we reached the top of one peak, the water looked blue, with some crystals on top," said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures could be seen from the air without having to move too much to see them – they were so close they could touch their horns.

Language Models are Few-Shot Learners [Brown et al.'20] https://openai.com/blog/better-language-models/

Reinforcement Learning

Learning to make sequential decisions

ALPHAGO

Albert learns to walk

https://www.youtube.com/watch?v=L_4BPjLBF4E&t=95s

Albert learns to walk

Iteration 1

Iteration 62

Iteration 163

Iteration 163

Albert learns to walk

Iteration 17

With new objective

Iteration 163

Al Learns to Walk (deep reinforcement learning) Pres en werk la texem Pres en werk la texem Pres en werk la texem but rewarded when your feet hit the ground.

Iteration 17

Iteration 932

Reinforcement Learning

The algorithm can collect data interactively

Improve the strategy based on the feedbacks

Taxonomy of Machine Learning (A Simplistic View Based on Tasks)

can also be viewed as tools/methods

Other Tools/Topics In This Course

Deep learning basics

- Introduction to learning theory
 - > Bias variance tradeoff
 - Feature selection
 - ML advice
- Broader aspects of ML
 Robustness/fairness

Questions?

Thank you!