
CMSC 478:
Reinforcement Learning

Some slides courtesy Cynthia Matuszek and Frank Farrero, with some material from Marie desJardin, Lise
Getoor, Jean-Claude Latombe, and Daphne Koller

1

There’s an entire book!

http://incompleteideas.
net/book/the-book-

2nd.html

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html

The Big Idea

• “Planning”: Find a sequence of steps to
accomplish a goal.
– Given start state, transition model, goal functions…

• This is a kind of sequential decision making.
– Transitions are deterministic.

• What if they are stochastic (probabilistic)?
– One time in ten, you drop your sock

• Probabilistic Planning: Make a plan that accounts
for probability by carrying it through the plan.

3

Review: Formalizing Agents

• Given:
– A state space S
– A set of actions a1, …, ak including their results
– Reward value at the end of each trial (series of

action) (may be positive or negative)

• Output:
– A mapping from states to actions

4

Review: Formalizing Agents

• Given:
– A state space S
– A set of actions a1, …, ak including their results
– Reward value at the end of each trial (series of

action) (may be positive or negative)

• Output:
– A mapping from states to actions
– Which is a policy, π

4

Reinforcement Learning

• We often have an agent which has a task to
perform
– It takes some actions in the world
– At some later point, gets feedback on how well it did
– The agent performs the same task repeatedly

• This problem is called reinforcement learning:
– The agent gets positive reinforcement for tasks done

well
– And gets negative reinforcement for tasks done poorly
– Must somehow figure out which actions to take next

time

5

Reinforcement Learning

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

environment

Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

environment

Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

get new state
and/or reward environment

Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

get new state
and/or reward environment

Simple Robot Navigation Problem

10

• In each state, the possible actions are U, D, R, and L

Probabilistic Transition Model

11

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the
 robot is already in the top row, then it does not move)

Probabilistic Transition Model

12

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the
 robot is already in the top row, then it does not move)
• With probability 0.1, the robot moves right one square (if the
 robot is already in the rightmost row, then it does not move)

Probabilistic Transition Model

13

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the
 robot is already in the top row, then it does not move)
• With probability 0.1, the robot moves right one square (if the
 robot is already in the rightmost row, then it does not move)
• With probability 0.1, the robot moves left one square (if the
 robot is already in the leftmost row, then it does not move)

Probabilistic Transition Model

14

• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the
 robot is already in the top row, then it does not move)
• With probability 0.1, the robot moves right one square (if the
 robot is already in the rightmost row, then it does not move)
• With probability 0.1, the robot moves left one square (if the
 robot is already in the leftmost row, then it does not move)

•D, R, and L have similar probabilistic effects

Markov Property

15

The transition properties depend only
on the current state, not on the previous
history (how that state was reached)

Markov assumption generally: current state only ever
depends on previous state (or finite set of previous
states).

Sequence of Actions

16

K

• Planned sequence of actions: (U, R)

J

2

3

1

4321

y

x

[3,2]

obstacle à

ß goal
ß start state

Sequence of Actions

17

• Planned sequence of actions: (U, R)
• U is executed

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

y

x

Histories

18

• Planned sequence of actions: (U, R)
• U has been executed
• R is executed

• 9 possible sequences of states – called histories
• 6 possible final states for the robot!

4321

2

3

1

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

y

x

Probability of Reaching the Goal

19

•P([4,3] | (U,R).[3,2]) =
 P([4,3] | R.[3,3]) x P([3,3] | U.[3,2])
 + P([4,3] | R.[4,2]) x P([4,2] | U.[3,2])

2

3

1

4321

Probability of Reaching the Goal

20

•P([4,3] | (U,R).[3,2]) =
 P([4,3] | R.[3,3]) x P([3,3] | U.[3,2])
 + P([4,3] | R.[4,2]) x P([4,2] | U.[3,2])

2

3

1

4321

•P([3,3] | U.[3,2]) = 0.8
•P([4,2] | U.[3,2]) = 0.1

Probability of Reaching the Goal

21

•P([4,3] | (U,R).[3,2]) =
 P([4,3] | R.[3,3]) x P([3,3] | U.[3,2])
 + P([4,3] | R.[4,2]) x P([4,2] | U.[3,2])

2

3

1

4321

•P([3,3] | U.[3,2]) = 0.8
•P([4,2] | U.[3,2]) = 0.1

•P([4,3] | R.[3,3]) = 0.8
•P([4,3] | R.[4,2]) = 0.1

Probability of Reaching the Goal

22

•P([4,3] | (U,R).[3,2]) =
 P([4,3] | R.[3,3]) x P([3,3] | U.[3,2])
 + P([4,3] | R.[4,2]) x P([4,2] | U.[3,2])

2

3

1

4321

•P([3,3] | U.[3,2]) = 0.8
•P([4,2] | U.[3,2]) = 0.1

•P([4,3] | R.[3,3]) = 0.8
•P([4,3] | R.[4,2]) = 0.1
•P([4,3] | (U,R).[3,2]) = 0.65

Probability of Reaching the Goal

23

•P([4,3] | (U,R).[3,2]) =
 P([4,3] | R.[3,3]) x P([3,3] | U.[3,2])
 + P([4,3] | R.[4,2]) x P([4,2] | U.[3,2])

2

3

1

4321

Note importance of Markov property
in this derivation

•P([3,3] | U.[3,2]) = 0.8
•P([4,2] | U.[3,2]) = 0.1

•P([4,3] | R.[3,3]) = 0.8
•P([4,3] | R.[4,2]) = 0.1
•P([4,3] | (U,R).[3,2]) = 0.65

Probability of Reaching the Goal

• Main idea: multiply backward probabilities of each step
taken from end state reached (because of our
Markov/independence assumptions)

• But we still need to consider different ways of reaching
a state
– Going all the way around the obstacle would be “worse”

24

2

3

1

4321

25

But what about the
learning part of

reinforcement learning?

RL, in our ML framework

26

Inductive Bias

RL, in our ML framework

27

Inductive Bias

a1

a2

a3

a4

RL, in our ML framework

28

Inductive Bias

Training
Evaluator:

Loss
function

score

Gold/correct
action

a1

a2

a3

a4

give feedback
to the predictor

RL-based
loss

Markov Decision Process:
Formalizing Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

get new state
and/or reward environment

(𝒮,𝒜,ℛ, 𝑃, 𝛾)Markov Decision
Process:

Markov Decision Process:
Formalizing Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

get new state
and/or reward environment

(𝒮,𝒜,ℛ, 𝑃, 𝛾)Markov Decision
Process:

set of
possible

states

set of
possible
actions

Markov Decision Process:
Formalizing Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

get new state
and/or reward environment

(𝒮,𝒜,ℛ, 𝑃, 𝛾)Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

Markov Decision Process:
Formalizing Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

get new state
and/or reward environment

(𝒮,𝒜,ℛ, 𝑃, 𝛾)Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

Markov Decision Process:
Formalizing Reinforcement Learning

take action

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg

agent

get new state
and/or reward environment

(𝒮,𝒜,ℛ, 𝑃, 𝛾)Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Robot in a room

+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

Slide courtesy Peter Bodík

Goal: what’s the strategy to achieve the maximum reward?

Robot in a room

+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

states: current location
actions: where to go next

rewards

what is the solution? Learn a mapping from (state, action)
pairs to new states

Slide courtesy Peter Bodík

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝑃, 𝛾)Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠!

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝑃, 𝛾)Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠!
for t = 1 to …:
 choose action 𝑎"

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝑃, 𝛾)Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠!
for t = 1 to …:
 choose action 𝑎"
 “move” to next state 𝑠" ∼ 𝜋 ⋅ 𝑠"#$, 𝑎")	

𝑃𝑜𝑙𝑖𝑐𝑦
𝜋: S à A

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝑃, 𝛾)Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠!
for t = 1 to …:
 choose action 𝑎"
 “move” to next state 𝑠" ∼ 𝜋 ⋅ 𝑠"#$, 𝑎")	
 get reward 𝑟" = 	ℛ(𝑠", 𝑎")

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝑃, 𝛾)Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠!
for t = 1 to …:
 choose action 𝑎"
 “move” to next state 𝑠" ∼ 𝜋 ⋅ 𝑠"#$, 𝑎")	
 get reward 𝑟" = 	ℛ(𝑠", 𝑎")

objective: choose
action over time

to maximize time-
discounted reward

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝑃, 𝛾)Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠!
for t = 1 to …:
 choose action 𝑎"
 “move” to next state 𝑠" ∼ 𝜋 ⋅ 𝑠"#$, 𝑎")	
 get reward 𝑟" = 	ℛ(𝑠", 𝑎")

objective: choose action over
time to maximize discounted

reward

Reward at
time t

Consider all
possible future

times t

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝑃, 𝛾)Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠!
for t = 1 to …:
 choose action 𝑎"
 “move” to next state 𝑠" ∼ 𝜋 ⋅ 𝑠"#$, 𝑎")	
 get reward 𝑟" = 	ℛ(𝑠", 𝑎")

objective: maximize
discounted reward

Reward at
time t

Discount at
time t

Consider all
possible future

times t

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝑃, 𝛾)Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠!
for t = 1 to …:
 choose action 𝑎"
 “move” to next state 𝑠" ∼ 𝜋 ⋅ 𝑠"#$, 𝑎")	
 get reward 𝑟" = 	ℛ(𝑠", 𝑎")

objective: maximize
discounted reward

max
-
$
./0

𝛾.𝑟.

Reward at
time t

Discount at
time t

Consider all
possible future

times t

Example of Discounted Reward
• If the discount factor 𝛾 =
0.8 then reward

0.8!𝑟! +
0.8"𝑟" + 0.8#𝑟# +

0.8$𝑟$ +⋯+ 0.8%𝑟% + …
• Allows you to consider all

possible rewards in the
future but preferring
current vs. future self

44

objective: maximize
discounted reward

max
-
$
./0

𝛾.𝑟.

Reward at
time t

Discount at
time t

Consider all
possible future

times t

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝑃, 𝛾)Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠!
for t = 1 to …:
 choose action 𝑎"
 “move” to next state 𝑠" ∼ 𝜋 ⋅ 𝑠"#$, 𝑎")	
 get reward 𝑟" = 	ℛ(𝑠", 𝑎")

“solution”: the policy 𝜋∗ that maximizes the
expected (average) time-discounted reward

objective: maximize
discounted reward

max
-
$
./0

𝛾.𝑟.

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝑃, 𝛾)Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠!
for t = 1 to …:
 choose action 𝑎"
 “move” to next state 𝑠" ∼ 𝜋 ⋅ 𝑠"#$, 𝑎")	
 get reward 𝑟" = 	ℛ(𝑠", 𝑎")

𝜋∗ = argmax
-

𝔼 $
./0

𝛾.𝑟. ; 𝜋“solution”

objective: maximize
discounted reward

max
-
$
./0

𝛾.𝑟.

Expected Value of a Random Variable

𝑋	~	𝑝 ⋅
random variable

Expected Value of a Random Variable

𝑋	~	𝑝 ⋅

𝔼 𝑋 =(
!

𝑥	𝑝 𝑥

random variable

expected value
(distribution p is

implicit)

Expected Value: Example

1 2 3 4 5 6

uniform distribution of number of cats I have

1/6 * 1 +
1/6 * 2 +
1/6 * 3 +
1/6 * 4 +
1/6 * 5 +
1/6 * 6

= 3.5

𝔼 𝑋 =+
!

𝑥	𝑝 𝑥

Expected Value: Example 2

1 2 3 4 5 6

non-uniform distribution of number of cats a normal
cat person has

1/2 * 1 +
1/10 * 2 +
1/10 * 3 +
1/10 * 4 +
1/10 * 5 +
1/10 * 6

= 2.5

𝔼 𝑋 =+
!

𝑥	𝑝 𝑥

Expected Value of a Function of a
Random Variable

𝑋	~	𝑝 ⋅

𝔼 𝑋 =(
!

𝑥	𝑝(𝑥)

𝔼 𝑓(𝑋) =? ? ?

Expected Value of a Function of a
Random Variable

𝑋	~	𝑝 ⋅

𝔼 𝑋 =(
!

𝑥	𝑝(𝑥)

𝔼 𝑓(𝑋) =(
!

𝑓(𝑥)	𝑝 𝑥

Expected Value of Function: Example

1 2 3 4 5 6

non-uniform distribution of number of cats I start with

What if each cat magically becomes two?
𝑓 𝑘 = 2"

𝔼 𝑓(𝑋) =+
!

𝑓(𝑥)	𝑝 𝑥

Expected Value of Function: Example

1 2 3 4 5 6

non-uniform distribution of number of cats I start with

1/2 * 2# +
1/10 * 2$ +
1/10 * 2% +
1/10 * 2& +
1/10 * 2' +
1/10 * 2(

= 13.4

What if each cat magically becomes two?
𝑓 𝑘 = 2"

𝔼 𝑓(𝑋) =+
!

𝑓(𝑥)	𝑝 𝑥 =+
!

2!𝑝(𝑥)

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝜋, 𝛾)Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠!
for t = 1 to …:
 choose action 𝑎"
 “move” to next state 𝑠" ∼ 𝜋 ⋅ 𝑠"#$, 𝑎")	
 get reward 𝑟" = 	ℛ(𝑠", 𝑎")

𝜋∗ = argmax
-

𝔼 $
./0

𝛾.𝑟. ; 𝜋“solution”

objective: maximize
discounted reward

max
-
$
./0

𝛾.𝑟.

Here, 𝑟! is a function of random
variable 𝑠!.

Markov Decision Process:
Formalizing Reinforcement Learning

(𝒮,𝒜,ℛ, 𝜋, 𝛾)Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state 𝑠!
for t = 1 to …:
 choose action 𝑎"
 “move” to next state 𝑠" ∼ 𝜋 ⋅ 𝑠"#$, 𝑎")	
 get reward 𝑟" = 	ℛ(𝑠", 𝑎")

𝜋∗ = argmax
-

𝔼 $
./0

𝛾.𝑟. ; 𝜋“solution”

objective: maximize
discounted reward

max
-
$
./0

𝛾.𝑟.

Here, 𝑟! is a function of random
variable 𝑠!. è

The expectation is over the
different states 𝑠! the agent
could be in at time t (equiv.

actions the agent could take).

Some Challenges

1. Representing states (and actions)

2. Defining our reward

3. Learning our policy

57

State Representation

Task: pole-balancing

state representation?

Slide courtesy/adapted Peter Bodík

move car left/right to
keep the pole balanced

State Representation

Task: pole-balancing

state representation
position and velocity of car
angle and angular velocity of pole

what about Markov property?

Slide courtesy/adapted Peter Bodík

move car left/right to
keep the pole balanced

State Representation

Task: pole-balancing

state representation
position and velocity of car
angle and angular velocity of pole

what about Markov property?
would need more info
noise in sensors, temperature,
bending of pole

Slide courtesy/adapted Peter Bodík

move car left/right to
keep the pole balanced

Some Challenges

1. Representing states (and actions)

2. Defining our reward

3. Learning our policy

61

Designing Rewards
robot in a maze

episodic task, not discounted, +1 when out, 0 for each step

chess
GOOD: +1 for winning, -1 losing
BAD: +0.25 for taking opponent’s pieces

high reward even when lose

Slide courtesy/adapted: Peter Bodík

Designing Rewards

robot in a maze
episodic task, not discounted, +1 when out, 0 for each
step

chess
GOOD: +1 for winning, -1 losing
BAD: +0.25 for taking opponent’s pieces

high reward even when lose

rewards
rewards indicate what we want to accomplish
NOT how we want to accomplish it

Slide courtesy/adapted: Peter Bodík

Designing Rewards
robot in a maze

episodic task, not discounted, +1 when out, 0 for each step

chess
GOOD: +1 for winning, -1 losing
BAD: +0.25 for taking opponent’s pieces

high reward even when lose

rewards
rewards indicate what we want to accomplish
NOT how we want to accomplish it

shaping
positive reward often very “far away”
rewards for achieving subgoals (domain knowledge)
also: adjust initial policy or initial value function

Slide courtesy/adapted: Peter Bodík

Simple Reinforcement Learning

• Feedback is at the end, on a series of actions.
• Very early concept in Artificial Intelligence!
• Arthur Samuels’ checker

program was a simple
reinforcement based learner,
initially developed in 1956.

• In 1962 it beat a human
checkers master.

www-
03.ibm.com/ibm/history/ibm100/us/en/icons/ibm7
00series/impacts/

Example: Animals Game

– Human: I’m thinking of an animal.

66

Example: Animals Game

– Human: I’m thinking of an animal.
– Computer: Is it a bird?

66

Example: Animals Game

– Human: I’m thinking of an animal.
– Computer: Is it a bird?
– Human: No.

66

Example: Animals Game

– Human: I’m thinking of an animal.
– Computer: Is it a bird?
– Human: No.
– Computer: Is it a frog?

66

Example: Animals Game

– Human: I’m thinking of an animal.
– Computer: Is it a bird?
– Human: No.
– Computer: Is it a frog?
– Human: No.

66

Example: Animals Game

– Human: I’m thinking of an animal.
– Computer: Is it a bird?
– Human: No.
– Computer: Is it a frog?
– Human: No.
– Computer: What is it?

66

Example: Animals Game

– Human: I’m thinking of an animal.
– Computer: Is it a bird?
– Human: No.
– Computer: Is it a frog?
– Human: No.
– Computer: What is it?
– Human: A mouse.

66

Example: Animals Guessing Game
Architecture

• All of the parts of ML Architecture:
– The Representation is a sequence of questions and

pairs of yes/no answers (decision tree).
– The Actor “walks” the tree, interacting with a

human; at each question it chooses whether to
follow the “yes” branch or the “no” branch.

– The Evaluator/loss function is the human player
telling the game whether it has guessed correctly.

– The Learner elicits new questions and adds
questions, guesses and branches to the tree.

67

Reinforcement Learning (cont.)

• Goal: agent acts in the world to maximize its
rewards

• Agent has to figure out what it did that made
it get that reward/punishment
– This is known as the credit assignment problem

68

Example: Animals Game

– Human: I’m thinking of an animal.

69

Example: Animals Game

– Human: I’m thinking of an animal.
– Computer: Is it a bird?

69

Example: Animals Game

– Human: I’m thinking of an animal.
– Computer: Is it a bird?
– Human: No.

69

Example: Animals Game

– Human: I’m thinking of an animal.
– Computer: Is it a bird?
– Human: No.
– Computer: Is it a frog?

69

Example: Animals Game

– Human: I’m thinking of an animal.
– Computer: Is it a bird?
– Human: No.
– Computer: Is it a frog?
– Human: No.

69

Example: Animals Game

– Human: I’m thinking of an animal.
– Computer: Is it a bird?
– Human: No.
– Computer: Is it a frog?
– Human: No.
– Computer: What is it?

69

Example: Animals Game

– Human: I’m thinking of an animal.
– Computer: Is it a bird?
– Human: No.
– Computer: Is it a frog?
– Human: No.
– Computer: What is it?
– Human: A mouse.

69

Example: Animals Game

– Human: I’m thinking of an animal.
– Computer: Is it a bird?
– Human: No.
– Computer: Is it a frog?
– Human: No.
– Computer: What is it?
– Human: A mouse.
– Computer: Tell me a question that distinguishes a frog from a

mouse.

69

Example: Animals Game

– Human: I’m thinking of an animal.
– Computer: Is it a bird?
– Human: No.
– Computer: Is it a frog?
– Human: No.
– Computer: What is it?
– Human: A mouse.
– Computer: Tell me a question that distinguishes a frog from a

mouse.
– Human: Does it have fur?

69

Example: Animals Game

– Human: I’m thinking of an animal.
– Computer: Is it a bird?
– Human: No.
– Computer: Is it a frog?
– Human: No.
– Computer: What is it?
– Human: A mouse.
– Computer: Tell me a question that distinguishes a frog from a

mouse.
– Human: Does it have fur?
– Computer: What is the answer for a frog?

69

Example: Animals Game

– Human: I’m thinking of an animal.
– Computer: Is it a bird?
– Human: No.
– Computer: Is it a frog?
– Human: No.
– Computer: What is it?
– Human: A mouse.
– Computer: Tell me a question that distinguishes a frog from a

mouse.
– Human: Does it have fur?
– Computer: What is the answer for a frog?
– Human: No.

69

Example: Animals Behind the Scene

70

Is it a bird?

Is it a penguin?

Yes

Does it have fur?

No

Is it a mouse? Is it a frog?

Yes No

After several rounds...

Computer: Is it a bird?
Human: No
Computer: Is it a frog?
Human: No
Computer: What is it?
Human: A mouse
Computer: Tell me a question
that distinguishes a frog from
a mouse.
Human: Does it have fur?
Computer: What is the
answer for a frog?
Human: no

Reinforcement Learning (cont.)
• Goal: agent acts in the world to maximize its

rewards
• Agent has to figure out what it did that made it

get that reward/punishment
– This is known as the credit assignment problem

• RL can be used to train computers to do many
tasks
– Backgammon and chess playing
– Job shop scheduling
– Controlling robot limbs

71

Reactive Agent

• This kind of agent is a reactive agent
• The general algorithm for a reactive agent is:
– Observe some state
– If it is a terminal state, stop
– Otherwise choose an action from the actions

possible in that state
– Perform the action
– Recur.

72

Simple Example

• Learn to play checkers
– Two-person game
– 8x8 boards, 12

checkers/side
– relatively simple set of

rules:
http://www.darkfish.co
m/checkers/rules.html

– Goal is to eliminate all
your opponent’s pieces

https://pixabay.com/en/checker-board-black-game-pattern-29911

http://www.darkfish.com/checkers/rules.html
http://www.darkfish.com/checkers/rules.html

Representing Checkers

• First we need to represent the game
• To completely describe one step in the game you

need
– A representation of the game board.
– A representation of the current pieces
– A variable which indicates whose turn it is
– A variable which tells you which side is “black”

• There is no history needed
• A look at the current board setup gives you

a complete picture of the state of the game

74

Representing Checkers
• Second, we need to represent the rules
• Represented as a set of allowable moves given board

state
– If a checker is at row x, column y, and row x+1 column y±1 is

empty, it can move there.
– If a checker is at (x,y), a checker of the opposite color is at

(x+1, y+1), and (x+2,y+2) is empty, the checker must move
there, and remove the “jumped” checker from play.

• There are additional rules, but all can be expressed in
terms of the state of the board and the checkers.

• Each rule includes the outcome of the relevant action in
terms of the state.

• What’s a good reward?

75

A More Complex Example

• Consider an agent which must learn to drive a
car

– State?

– Possible actions?

– Rewards?

76

Some Challenges

1. Representing states (and actions)

2. Defining our reward

3. Learning our policy

77

Overview: Learning Strategies

Dynamic Programming

Q-learning

Monte Carlo approaches

use value functions to structure the search for good
policies

Dynamic programming

Slide courtesy/adapted: Peter Bodík

use value functions to structure the search for good
policies

policy evaluation: compute Vp from p
policy improvement: improve p based on Vp

Dynamic programming

Slide courtesy/adapted: Peter Bodík

use value functions to structure the search for good
policies

policy evaluation: compute Vp from p
policy improvement: improve p based on Vp

start with an arbitrary policy
repeat evaluation/improvement until convergence

Dynamic programming

Slide courtesy/adapted: Peter Bodík

Accessible or
observable stateRepeat:

w s ß sensed state
w If s is a terminal state then exit
w a ß choose action (given s)
w Perform a

Reactive Agent Algorithm

96

Policy (Reactive/Closed-Loop Strategy)

97

• In every state, we need to know what to do
• The goal doesn’t change
• A policy (P) is a complete mapping from
 states to actions

• “If in [3,2], go up; if in [3,1], go left; if in…”

-1

+1

2

3

1

4321

Repeat:
w s ß sensed state
w If s is terminal then exit
w a ß P(s)
w Perform a

Reactive Agent Algorithm

98

Optimal Policy

99

-1

+1

• A policy P is a complete mapping from states to actions
• The optimal policy P* is the one that always yields a
 history (sequence of steps ending at a terminal state)
 with maximal expected utility

2

3

1

4321

Optimal Policy

100

-1

+1

• A policy P is a complete mapping from states to actions
• The optimal policy P* is the one that always yields a
 history with maximal expected utility

2

3

1

4321

This problem is called a
Markov Decision Problem (MDP)

How to compute P*?

Defining Value Function
• Problem:
– When making a decision, we only know the

reward so far, and the possible actions

101

Defining Value Function
• Problem:
– When making a decision, we only know the

reward so far, and the possible actions
– We’ve defined value function retroactively (i.e.,

the value function/utility of a history/sequence of
states is known once we finish it)

101

Defining Value Function
• Problem:
– When making a decision, we only know the

reward so far, and the possible actions
– We’ve defined value function retroactively (i.e.,

the value function/utility of a history/sequence of
states is known once we finish it)

– What is the value function of a particular state
in the middle of decision making?

101

Defining Value Function
• Problem:
– When making a decision, we only know the

reward so far, and the possible actions
– We’ve defined value function retroactively (i.e.,

the value function/utility of a history/sequence of
states is known once we finish it)

– What is the value function of a particular state
in the middle of decision making?

– Need to compute expected value function of
possible future histories/states

101

Defining Value Function
• Problem:
– When making a decision, we only know the

reward so far, and the possible actions
– We’ve defined value function retroactively (i.e.,

the value function/utility of a history/sequence of
states is known once we finish it)

– What is the value function of a particular state
in the middle of decision making?

– Need to compute expected value function of
possible future histories/states

101

Value Iteration

• Initialize the utility of each non-terminal state
si to U0(i) = 0 } or some uniform or uniformly distributed

value
• For t = 0, 1, 2, …, do:

Ut+1(i) ßR(i) + maxaSkP(k | a.i) Ut(k)

102

-1

+1

2

3

1

4321

Value Iteration

• Initialize the utility of each non-terminal state
si to U0(i) = 0

• For t = 0, 1, 2, …, do:
Ut+1(i) ßR(i) + maxaSkP(k | a.i) Ut(k)

103

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868 ???

0.660

Value Iteration

• Initialize the utility of each non-terminal state
si to U0(i) = 0

• For t = 0, 1, 2, …, do:
Ut+1(i) ßR(i) + maxaSkP(k | a.i) Ut(k)

103

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868 ???

0.660

EXERCISE: What is V*([3,3]) (assuming that the other V* are as shown)?

Value Iteration

• Initialize the utility of each non-terminal state
si to U0(i) = 0

• For t = 0, 1, 2, …, do:
Ut+1(i) ßR(i) + maxaSkP(k | a.i) Ut(k)

104

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868

0.660

???

EXERCISE: What is V*([3,3]) (assuming that the other V* are as shown)?

Value Iteration

• Initialize the utility of each non-terminal state
si to U0(i) = 0

• For t = 0, 1, 2, …, do:
Ut+1(i) ßR(i) + maxaSkP(k | a.i) Ut(k)

104

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868

0.660

From (3, 3), 3 options: (3, 2), (4, 3),
(3, 4) => but there is no (3,4) but wall, so
bounced off and remains at (3, 3)

Value Iteration

• Initialize the utility of each non-terminal state
si to U0(i) = 0

• For t = 0, 1, 2, …, do:
Ut+1(i) ßR(i) + maxaSkP(k | a.i) Ut(k)

104

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868

0.660

V*3,3 = R3,3 +
 [P3,2 V*3,2 + P3,3 V*3,3 + P4,3 V*4,3]

From (3, 3), 3 options: (3, 2), (4, 3),
(3, 4) => but there is no (3,4) but wall, so
bounced off and remains at (3, 3)

Value Iteration

• Initialize the utility of each non-terminal state
si to U0(i) = 0

• For t = 0, 1, 2, …, do:
Ut+1(i) ßR(i) + maxaSkP(k | a.i) Ut(k)

104

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868

0.660

V*3,3 = R3,3 +
 [P3,2 V*3,2 + P3,3 V*3,3 + P4,3 V*4,3]
 = -0.04 +
 [0.1*0.660 + 0.1*0.918 + 0.8*1]

From (3, 3), 3 options: (3, 2), (4, 3),
(3, 4) => but there is no (3,4) but wall, so
bounced off and remains at (3, 3)

Value Iteration

• Initialize the utility of each non-terminal state
si to U0(i) = 0

• For t = 0, 1, 2, …, do:
Ut+1(i) ßR(i) + maxaSkP(k | a.i) Ut(k)

104

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868 .918

0.660

V*3,3 = R3,3 +
 [P3,2 V*3,2 + P3,3 V*3,3 + P4,3 V*4,3]
 = -0.04 +
 [0.1*0.660 + 0.1*0.918 + 0.8*1]

From (3, 3), 3 options: (3, 2), (4, 3),
(3, 4) => but there is no (3,4) but wall, so
bounced off and remains at (3, 3)

Value Iteration

• Initialize the utility of each non-terminal state
si to U0(i) = 0

• For t = 0, 1, 2, …, do:
Ut+1(i) ßR(i) + maxaSkP(k | a.i) Ut(k)

104

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868 .918

0.660

V*3,3 = R3,3 +
 [P3,2 V*3,2 + P3,3 V*3,3 + P4,3 V*4,3]
 = -0.04 +
 [0.1*0.660 + 0.1*0.918 + 0.8*1]

From (3, 3), 3 options: (3, 2), (4, 3),
(3, 4) => but there is no (3,4) but wall, so
bounced off and remains at (3, 3)

Value Iteration

132

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868

0.660

0.918

0.881

0.812

0.675

In (3, 3), since à action gave us the maximum expected
future reward, we choose to keep à in our policy. Same
thing was done for all states.

More
Breakdown

Optimal Policy

105

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868

0.660

Whichever is higher becomes
next action for (3, 1)

.918

Optimal Policy

105

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868 .918

0.660

𝜋*3,1 being (ß) =
Pup V*2,1 + Pleft V*3,1 (Bounced off) + Pright V*3,2

= 0.8 * 0.655 + 0.1 * 0.611 + 0.1 * 0.66

Whichever is higher becomes
next action for (3, 1)

Optimal Policy

105

-1

+1

2

3

1

4321

0.705 0.655 0.3880.611

0.762

0.812 0.868 .918

0.660

𝜋*3,1 being (ß) =
Pup V*2,1 + Pleft V*3,1 (Bounced off) + Pright V*3,2

= 0.8 * 0.655 + 0.1 * 0.611 + 0.1 * 0.66

𝜋*3,1 being (↑) =
Pup V*3,2 + Pleft V*2,1 + Pright V*1,4

Whichever is higher becomes
next action for (3, 1)

Policy Iteration
• Pick a policy P at random
• Repeat:
– Compute Value function of each state for P

– Compute the policy P’ given these value
functions

– If P’ = P then return P

109

Policy Iteration
• Pick a policy P at random
• Repeat:
– Compute Value function of each state for P

– Compute the policy P’ given these value
functions

– If P’ = P then return P

109

Or solve the set of linear equations:
(often a sparse system)

Infinite Horizon

111

-1

+1

2

3

1

4321

In many problems, e.g., the robot
navigation example, histories are
potentially unbounded and the same
state can be reached many times

Advanced
topic

Infinite Horizon

111

-1

+1

2

3

1

4321

In many problems, e.g., the robot
navigation example, histories are
potentially unbounded and the same
state can be reached many times

What if the robot lives forever?

Advanced
topic

Infinite Horizon

111

-1

+1

2

3

1

4321

In many problems, e.g., the robot
navigation example, histories are
potentially unbounded and the same
state can be reached many times

One trick:
Use discounting to make an infinite
horizon problem mathematically
tractable

What if the robot lives forever?

Advanced
topic

Value Iteration: Summary
– Initialize state values (expected utilities)

randomly
– Repeatedly update state values using best

action, according to current approximation of
state values

– Terminate when state values stabilize
– Resulting policy will be the best policy because

it’s based on accurate state value estimation

112

Policy Iteration: Summary
– Initialize policy randomly
– Repeatedly update state values using best action,
according to current approximation of state values
– Then update policy based on new state values
– Terminate when policy stabilizes
– Resulting policy is the best policy, but state values
may not be accurate (may not have converged yet)
– Policy iteration is often faster (because we don’t
have to get the state values right)
• Both methods have a major weakness: They require us to

know the transition function exactly in advance!

113

Exploration vs. Exploitation

• Problem with naïve reinforcement learning:
– What action to take?
– Best apparent action, based

on learning to date
• Greedy strategy
• Often prematurely converges to a suboptimal policy!

– Random (or unknown) action
• Will cover entire state space
• Very expensive and slow to learn!
• When to stop being random?

– Balance exploration (try random actions) with
exploitation (use best action so far)

} Exploitation

} Exploration

More on Exploration

• Agent may sometimes choose to explore suboptimal
moves in hopes of finding better outcomes
– Only by visiting all states frequently enough can we

guarantee learning the true values of all the states
• When the agent is learning, ideal would be to get

accurate values for all states
– Even though that may mean getting a negative outcome

• When agent is performing, ideal would be to get
optimal outcome

• A learning agent should have an exploration policy

124

Exploration Policy

• Wacky approach (exploration): act randomly in hopes
of eventually exploring entire environment
– Choose any legal checkers move

• Greedy approach (exploitation): act to maximize utility
using current estimate
– Choose moves that have in the past led to wins

• Reasonable balance: act more wacky (exploratory)
when agent has little idea of environment; more
greedy when the model is close to correct
– Suppose you know no checkers strategy?
– What’s the best way to get better?

125

Overview: Learning Strategies

Dynamic Programming

Q-learning

Monte Carlo approaches

Q-learning

𝑄: 𝑠, 𝑎 → ℝ
Goal: learn a function that

computes a “goodness” score
for taking a particular action 𝑎

in state 𝑠

Q-learning

previous algorithms: on-policy algorithms
start with a random policy, iteratively improve
converge to optimal

Q-learning: off-policy
use any policy to estimate Q

Q directly approximates Q* (Bellman optimality equation)
independent of the policy being followed
only requirement: keep updating each (s,a) pair

Slide courtesy/adapted: Peter Bodík

Q-learning

previous algorithms: on-policy algorithms
start with a random policy, iteratively improve
converge to optimal

Q-learning: off-policy
use any policy to estimate Q

Q directly approximates Q* (Bellman optimality equation)
independent of the policy being followed
only requirement: keep updating each (s,a) pair

Slide courtesy/adapted: Peter Bodík

R(st)

Deep/Neural Q-learning

𝑄 𝑠, 𝑎; 𝜃 ≈ 𝑄∗(𝑠, 𝑎)
desired optimal solutionneural network

Deep/Neural Q-learning

𝑄 𝑠, 𝑎; 𝜃 ≈ 𝑄∗(𝑠, 𝑎)
desired optimal solutionneural network

Approach: Form (and learn)
a neural network to model

our optimal Q function

Deep/Neural Q-learning

𝑄 𝑠, 𝑎; 𝜃 ≈ 𝑄∗(𝑠, 𝑎)
desired optimal solutionneural network

Approach: Form (and learn)
a neural network to model

our optimal Q function

Learn weights
(parameters) 𝜃 of our

neural network

Overview: Learning Strategies

Dynamic Programming

Q-learning

Monte Carlo approaches

Monte Carlo policy evaluation

want to estimate Vp(s)don’t need full
knowledge of

environment (just
(simulated) experience)

Slide courtesy/adapted: Peter Bodík

Monte Carlo policy evaluation
want to estimate Vp(s)

expected return starting from s
and following p

estimate as average of
observed returns in state s

s0
s s

+1 -2 0 +1 -3 +5
R1(s) = +2

s0
s0
s0
s0
s0

R2(s) = +1
R3(s) = -5

R4(s) = +4

Vp(s) ≈ (2 + 1 – 5 + 4)/4 = 0.5

don’t need full
knowledge of

environment (just
(simulated) experience)

Slide courtesy/adapted: Peter Bodík

Maintaining exploration
key ingredient of RL

deterministic/greedy policy won’t explore all actions
don’t know anything about the environment at the beginning
need to try all actions to find the optimal one

maintain exploration
use soft policies instead: p(s,a)>0 (for all s,a)

ε-greedy policy
with probability 1-ε perform the optimal/greedy action
with probability ε perform a random action

will keep exploring the environment
slowly move it towards greedy policy: ε -> 0

Slide courtesy/adapted: Peter Bodík

RL Summary 1:

• Reinforcement learning systems
– Learn series of actions or decisions, rather than a

single decision
– Based on feedback given at the end of the series

• A reinforcement learner has
– A goal
– Carries out trial-and-error search
– Finds the best paths toward that goal

137

RL Summary 2:

• A typical reinforcement learning system is an
active agent, interacting with its environment.

• It must balance:
– Exploration: trying different actions and sequences of

actions to discover which ones work best
– Exploitation (achievement): using sequences which

have worked well so far

• Must learn successful sequences of actions in an
uncertain environment

138

RL Summary 3

• Very hot area of research at the moment
• There are many more sophisticated RL

algorithms
– Most notably: probabilistic approaches

• Applicable to game-playing, search, finance,
robot control, driving, scheduling, diagnosis, …

139

EXTRA SLIDES

140

Utility Function

141

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape

-1

+1

2

3

1

4321

Utility Function

142

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries

-1

+1

2

3

1

4321

Utility Function

143

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] and [4,2] are terminal states

-1

+1

2

3

1

4321

Utility Function

144

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] and [4,2] are terminal states
• Histories have utility!

-1

+1

2

3

1

4321

Utility of a History

145

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] or [4,2] are terminal states
• Histories have utility!
• The utility of a history is defined by the utility of the last
 state (+1 or –1) minus n/25, where n is the number of moves

• Many utility functions possible, for many kinds of problems.

-1

+1

2

3

1

4321

Utility of an Action Sequence

146

-1

+1

2

3

1

4321

• Consider the action sequence (U,R) from [3,2]

Utility of an Action Sequence

147

-1

+1

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability

Utility of an Action Sequence

148

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability
• The utility of the sequence is the expected utility of the histories:
 U = ShUh P(h)

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

Optimal Action Sequence

149

-1

+1

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability
• The utility of the sequence is the expected utility of the histories:
 U = ShUh P(h)
• The optimal sequence is the one with maximal utility

Optimal Action Sequence

150

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability
• The utility of the sequence is the expected utility of the histories
• The optimal sequence is the one with maximal utility
• But is the optimal action sequence what we want to
 compute?

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

Optimal Action Sequence

151

-1

+1

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability
• The utility of the sequence is the expected utility of the histories
• The optimal sequence is the one with maximal utility
• But is the optimal action sequence what we want to
 compute?

2

3

1

4321

[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

only if the sequence is executed blindly!

