
CMSC 478: 
Reinforcement Learning

Some slides courtesy Cynthia Matuszek and Frank Farrero, with some material from Marie desJardin, Lise 
Getoor, Jean-Claude Latombe, and Daphne Koller
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There’s an entire book!

http://incompleteideas.
net/book/the-book-

2nd.html 

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html


The Big Idea

• “Planning”: Find a sequence of steps to 
accomplish a goal.
– Given start state, transition model, goal functions…

• This is a kind of sequential decision making.
– Transitions are deterministic.

• What if they are stochastic (probabilistic)?
– One time in ten, you drop your sock

• Probabilistic Planning: Make a plan that accounts 
for probability by carrying it through the plan.
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Review: Formalizing Agents

• Given:
– A state space S
– A set of actions a1, …, ak including their results
– Reward value at the end of each trial (series of 

action) (may be positive or negative)

• Output:
– A mapping from states to actions
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Review: Formalizing Agents

• Given:
– A state space S
– A set of actions a1, …, ak including their results
– Reward value at the end of each trial (series of 

action) (may be positive or negative)

• Output:
– A mapping from states to actions
– Which is a policy, π
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Reinforcement Learning

• We often have an agent which has a task to 
perform
– It takes some actions in the world
– At some later point, gets feedback on how well it did 
– The agent performs the same task repeatedly

• This problem is called reinforcement learning: 
– The agent gets positive reinforcement for tasks done 

well
– And gets negative reinforcement for tasks done poorly
– Must somehow figure out which actions to take next 

time
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Reinforcement Learning

Robot image: openclipart.org
https://static.vecteezy.com/system/resources/previews/000/0
90/451/original/four-seasons-landscape-illustrations-vector.jpg
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Simple Robot Navigation Problem
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• In each state, the possible actions are U, D, R, and L



Probabilistic Transition Model
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• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the 
   robot is already in the top row, then it does not move)



Probabilistic Transition Model
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• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the 
   robot is already in the top row, then it does not move)
• With probability 0.1, the robot moves right one square (if the
   robot is already in the rightmost row, then it does not move)



Probabilistic Transition Model
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• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the 
   robot is already in the top row, then it does not move)
• With probability 0.1, the robot moves right one square (if the
   robot is already in the rightmost row, then it does not move)
• With probability 0.1, the robot moves left one square (if the
   robot is already in the leftmost row, then it does not move)



Probabilistic Transition Model
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• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the 
   robot is already in the top row, then it does not move)
• With probability 0.1, the robot moves right one square (if the
   robot is already in the rightmost row, then it does not move)
• With probability 0.1, the robot moves left one square (if the
   robot is already in the leftmost row, then it does not move)

•D, R, and L have similar probabilistic effects



Markov Property
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The transition properties depend only 
on the current state, not on the previous 
history (how that state was reached) 

Markov assumption generally: current state only ever 
depends on previous state (or finite set of previous 
states).



Sequence of Actions
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Sequence of Actions
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• Planned sequence of actions:  (U, R)
• U is executed
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Histories
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• Planned sequence of actions:  (U, R)
• U has been executed
• R is executed

• 9 possible sequences of states – called histories 
• 6 possible final states for the robot!
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Probability of Reaching the Goal
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•P([4,3] | (U,R).[3,2]) = 
                           P([4,3] | R.[3,3]) x P([3,3] | U.[3,2]) 
                      + P([4,3] | R.[4,2]) x P([4,2] | U.[3,2])
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•P([3,3] | U.[3,2]) = 0.8
•P([4,2] | U.[3,2]) = 0.1
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Probability of Reaching the Goal
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•P([4,3] | (U,R).[3,2]) = 
                           P([4,3] | R.[3,3]) x P([3,3] | U.[3,2]) 
                      + P([4,3] | R.[4,2]) x P([4,2] | U.[3,2])
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Note importance of Markov property 
in this derivation

•P([3,3] | U.[3,2]) = 0.8
•P([4,2] | U.[3,2]) = 0.1

•P([4,3] | R.[3,3]) = 0.8
•P([4,3] | R.[4,2]) = 0.1
•P([4,3] | (U,R).[3,2]) = 0.65



Probability of Reaching the Goal

• Main idea: multiply backward probabilities of each step 
taken from end state reached (because of our 
Markov/independence assumptions)

• But we still need to consider different ways of reaching 
a state
– Going all the way around the obstacle would be “worse”

24

2

3

1

4321



25

But what about the 
learning part of 

reinforcement learning?



RL, in our ML framework
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Inductive Bias



RL, in our ML framework
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Inductive Bias
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RL, in our ML framework
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Inductive Bias

Training 
Evaluator: 

Loss 
function

score

Gold/correct 
action

a1

a2

a3

a4

give feedback 
to the predictor

RL-based 
loss



Markov Decision Process: 
Formalizing Reinforcement Learning
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Robot in a room

+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

Slide courtesy Peter Bodík

Goal: what’s the strategy to achieve the maximum reward?



Robot in a room

+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

states: current location
actions: where to go next

rewards

what is the solution? Learn a mapping from (state, action) 
pairs to new states

Slide courtesy Peter Bodík
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𝑃𝑜𝑙𝑖𝑐𝑦
𝜋: S à A
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$
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Discount at 
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Consider all 
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Example of Discounted Reward
• If the discount factor 𝛾 =
0.8 then reward

0.8!𝑟! +
0.8"𝑟" + 0.8#𝑟# +

0.8$𝑟$ +⋯+ 0.8%𝑟% + …
• Allows you to consider all 

possible rewards in the 
future but preferring 
current vs. future self

44

objective: maximize 
discounted reward

max
-
$
./0

𝛾.𝑟.

Reward at 
time t

Discount at 
time t

Consider all 
possible future 

times t
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Process:
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Start in initial state 𝑠!
for t = 1 to …:
    choose action 𝑎"
    “move” to next state 𝑠" ∼ 𝜋 ⋅ 𝑠"#$, 𝑎")	
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“solution”: the policy 𝜋∗ that maximizes the 
expected (average) time-discounted reward

objective: maximize 
discounted reward

max
-
$
./0

𝛾.𝑟.
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Expected Value of a Random Variable

𝑋	~	𝑝 ⋅
random variable



Expected Value of a Random Variable

𝑋	~	𝑝 ⋅

𝔼 𝑋 =(
!

𝑥	𝑝 𝑥

random variable

expected value 
(distribution p is 

implicit)



Expected Value: Example

1 2 3 4 5 6

uniform distribution of number of cats I have

1/6 * 1 +
1/6 * 2 +
1/6 * 3 +
1/6 * 4 +
1/6 * 5 + 
1/6 * 6 

= 3.5

𝔼 𝑋 =+
!

𝑥	𝑝 𝑥



Expected Value: Example 2

1 2 3 4 5 6

non-uniform distribution of number of cats a normal 
cat person has

1/2 * 1 +
1/10 * 2 +
1/10 * 3 +
1/10 * 4 +
1/10 * 5 + 
1/10 * 6 

= 2.5

𝔼 𝑋 =+
!

𝑥	𝑝 𝑥



Expected Value of a Function of a 
Random Variable

𝑋	~	𝑝 ⋅

𝔼 𝑋 =(
!

𝑥	𝑝(𝑥)

𝔼 𝑓(𝑋) =? ? ?



Expected Value of a Function of a 
Random Variable

𝑋	~	𝑝 ⋅

𝔼 𝑋 =(
!

𝑥	𝑝(𝑥)

𝔼 𝑓(𝑋) =(
!

𝑓(𝑥)	𝑝 𝑥



Expected Value of Function: Example

1 2 3 4 5 6

non-uniform distribution of number of cats I start with

What if each cat magically becomes two?
𝑓 𝑘 = 2"

𝔼 𝑓(𝑋) =+
!

𝑓(𝑥)	𝑝 𝑥



Expected Value of Function: Example

1 2 3 4 5 6

non-uniform distribution of number of cats I start with

1/2 * 2# +
1/10 * 2$ +
1/10 * 2% +
1/10 * 2& +
1/10 * 2' + 
1/10 * 2( 

= 13.4

What if each cat magically becomes two?
𝑓 𝑘 = 2"

𝔼 𝑓(𝑋) =+
!

𝑓(𝑥)	𝑝 𝑥 =+
!

2!𝑝(𝑥)
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    choose action 𝑎"
    “move” to next state 𝑠" ∼ 𝜋 ⋅ 𝑠"#$, 𝑎")	
    get reward 𝑟" = 	ℛ(𝑠", 𝑎")

𝜋∗ = argmax
-

𝔼 $
./0

𝛾.𝑟. ; 𝜋“solution”

objective: maximize 
discounted reward

max
-
$
./0

𝛾.𝑟.

Here, 𝑟! is a function of random 
variable 𝑠!. 
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(𝒮,𝒜,ℛ, 𝜋, 𝛾)Markov Decision 
Process:
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Start in initial state 𝑠!
for t = 1 to …:
    choose action 𝑎"
    “move” to next state 𝑠" ∼ 𝜋 ⋅ 𝑠"#$, 𝑎")	
    get reward 𝑟" = 	ℛ(𝑠", 𝑎")

𝜋∗ = argmax
-

𝔼 $
./0

𝛾.𝑟. ; 𝜋“solution”

objective: maximize 
discounted reward

max
-
$
./0

𝛾.𝑟.

Here, 𝑟! is a function of random 
variable 𝑠!. è 

The expectation is over the 
different states 𝑠! the agent 
could be in at time t (equiv. 

actions the agent could take).



Some Challenges

1. Representing states (and actions)

2. Defining our reward

3. Learning our policy

57



State Representation

Task: pole-balancing

state representation?

Slide courtesy/adapted Peter Bodík

move car left/right to 
keep the pole balanced



State Representation

Task: pole-balancing

state representation
position and velocity of car
angle and angular velocity of pole

what about Markov property? 

Slide courtesy/adapted Peter Bodík

move car left/right to 
keep the pole balanced



State Representation

Task: pole-balancing

state representation
position and velocity of car
angle and angular velocity of pole

what about Markov property? 
would need more info
noise in sensors, temperature, 
bending of pole

Slide courtesy/adapted Peter Bodík

move car left/right to 
keep the pole balanced



Some Challenges

1. Representing states (and actions)

2. Defining our reward

3. Learning our policy
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Designing Rewards
robot in a maze

episodic task, not discounted, +1 when out, 0 for each step

chess
GOOD: +1 for winning, -1 losing
BAD: +0.25 for taking opponent’s pieces

high reward even when lose

Slide courtesy/adapted: Peter Bodík



Designing Rewards

robot in a maze
episodic task, not discounted, +1 when out, 0 for each 
step

chess
GOOD: +1 for winning, -1 losing
BAD: +0.25 for taking opponent’s pieces

high reward even when lose

rewards
rewards indicate what we want to accomplish
NOT how we want to accomplish it

Slide courtesy/adapted: Peter Bodík



Designing Rewards
robot in a maze

episodic task, not discounted, +1 when out, 0 for each step

chess
GOOD: +1 for winning, -1 losing
BAD: +0.25 for taking opponent’s pieces

high reward even when lose

rewards
rewards indicate what we want to accomplish
NOT how we want to accomplish it

shaping
positive reward often very “far away”
rewards for achieving subgoals (domain knowledge)
also: adjust initial policy or initial value function

Slide courtesy/adapted: Peter Bodík



Simple Reinforcement Learning

• Feedback is at the end, on a series of actions.
• Very early concept in Artificial Intelligence!
• Arthur Samuels’ checker 

program was a simple 
reinforcement based learner, 
initially developed in 1956.

• In 1962 it beat a human 
checkers master.

www-
03.ibm.com/ibm/history/ibm100/us/en/icons/ibm7
00series/impacts/



Example: Animals Game

– Human: I’m thinking of an animal.
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– Human: I’m thinking of an animal.
– Computer: Is it a bird?
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– Computer: Is it a frog?
– Human: No.
– Computer: What is it?
– Human: A mouse.
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Example: Animals Guessing Game 
Architecture

• All of the parts of ML Architecture:
– The Representation is a sequence of questions and 

pairs of yes/no answers (decision tree).
– The Actor “walks” the tree, interacting with a 

human; at each question it chooses whether to 
follow the “yes” branch or the “no” branch.

– The Evaluator/loss function is the human player 
telling the game whether it has guessed correctly.

– The Learner elicits new questions and adds 
questions, guesses and branches to the tree.
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Reinforcement Learning (cont.)

• Goal: agent acts in the world to maximize its 
rewards

• Agent has to figure out what it did that made 
it get that reward/punishment
– This is known as the credit assignment problem
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Example: Animals Game

– Human: I’m thinking of an animal.
– Computer: Is it a bird?
– Human: No.
– Computer: Is it a frog?
– Human: No.
– Computer: What is it?
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Example: Animals Behind the Scene

70

Is it a bird?

Is it a penguin?

Yes

Does it have fur?

No

Is it a mouse? Is it a frog?

Yes No

After several rounds...

Computer: Is it a bird?
Human: No
Computer: Is it a frog?
Human: No
Computer: What is it?
Human: A mouse
Computer: Tell me a question 
that distinguishes a frog from 
a mouse.
Human: Does it have fur?
Computer: What is the 
answer for a frog?
Human: no



Reinforcement Learning (cont.)
• Goal: agent acts in the world to maximize its 

rewards
• Agent has to figure out what it did that made it 

get that reward/punishment
– This is known as the credit assignment problem

• RL can be used to train computers to do many 
tasks
– Backgammon and chess playing
– Job shop scheduling 
– Controlling robot limbs
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Reactive Agent

• This kind of agent is a reactive agent
• The general algorithm for a reactive agent is:
– Observe some state
– If it is a terminal state, stop
– Otherwise choose an action from the actions 

possible in that state
– Perform the action
– Recur.
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Simple Example

• Learn to play checkers
– Two-person game
– 8x8 boards, 12 

checkers/side
– relatively simple set of 

rules:
http://www.darkfish.co
m/checkers/rules.html

– Goal is to eliminate all 
your opponent’s pieces

https://pixabay.com/en/checker-board-black-game-pattern-29911

http://www.darkfish.com/checkers/rules.html
http://www.darkfish.com/checkers/rules.html


Representing Checkers

• First we need to represent the game
• To completely describe one step in the game you 

need
– A representation of the game board.
– A representation of the current pieces
– A variable which indicates whose turn it is
– A variable which tells you which side is “black”

• There is no history needed
• A look at the current board setup gives you 

a complete picture of the state of the game
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Representing Checkers
• Second, we need to represent the rules
• Represented as a set of allowable moves given board 

state
– If a checker is at row x, column y, and row x+1 column y±1 is 

empty, it can move there.
– If a checker is at (x,y), a checker of the opposite color is at 

(x+1, y+1), and (x+2,y+2) is empty, the checker must move 
there, and remove the “jumped” checker from play.

• There are additional rules, but all can be expressed in 
terms of the state of the board and the checkers.

• Each rule includes the outcome of the relevant action in 
terms of the state.

• What’s a good reward?
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A More Complex Example

• Consider an agent which must learn to drive a 
car

– State?

– Possible actions?

– Rewards?
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Some Challenges

1. Representing states (and actions)

2. Defining our reward

3. Learning our policy
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Overview: Learning Strategies

Dynamic Programming

Q-learning

Monte Carlo approaches



use value functions to structure the search for good 
policies

Dynamic programming

Slide courtesy/adapted: Peter Bodík
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use value functions to structure the search for good 
policies

policy evaluation: compute Vp from p
policy improvement: improve p based on Vp

start with an arbitrary policy
repeat evaluation/improvement until convergence

Dynamic programming

Slide courtesy/adapted: Peter Bodík



Accessible or
observable stateRepeat:

w s ß sensed state
w If s is a terminal state then exit
w a ß choose action (given s)
w Perform a

Reactive Agent Algorithm
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Policy (Reactive/Closed-Loop Strategy)

97

• In every state, we need to know what to do
• The goal doesn’t change 
• A policy (P) is a complete mapping from 
  states to actions

• “If in [3,2], go up; if in [3,1], go left; if in…”
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Repeat:
w s ß sensed state
w If s is terminal then exit
w a ß P(s)
w Perform a

Reactive Agent Algorithm

98



Optimal Policy

99
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+1

• A policy P is a complete mapping from states to actions
• The optimal policy P* is the one that always yields a 
   history (sequence of steps ending at a terminal state) 
   with maximal expected utility
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Optimal Policy

100
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• A policy P is a complete mapping from states to actions
• The optimal policy P* is the one that always yields a 
   history with maximal expected utility

2

3

1

4321

This problem is called a
Markov Decision Problem (MDP)

How to compute P*?



Defining Value Function
• Problem:  
– When making a decision, we only know the 

reward so far, and the possible actions
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Value Iteration

• Initialize the utility of each non-terminal state 
si to U0(i) = 0     } or some uniform or uniformly distributed 

value
• For t = 0, 1, 2, …, do:

Ut+1(i) ßR(i) + maxaSkP(k | a.i) Ut(k)

102
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Value Iteration
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In (3, 3), since à action gave us the maximum expected 
future reward, we choose to keep à in our policy. Same 
thing was done for all states.

More 
Breakdown



Optimal Policy
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𝜋*3,1  being (ß) = 
Pup V*2,1 + Pleft V*3,1 (Bounced off) + Pright V*3,2

= 0.8 * 0.655 + 0.1 * 0.611 + 0.1 * 0.66

𝜋*3,1  being (↑) = 
Pup V*3,2 + Pleft V*2,1 + Pright V*1,4

Whichever is higher becomes 
next action for (3, 1)



Policy Iteration
• Pick a policy P at random
• Repeat:
– Compute Value function of each state for P

– Compute the policy P’ given these value 
functions

– If P’ = P then return P
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Policy Iteration
• Pick a policy P at random
• Repeat:
– Compute Value function of each state for P

– Compute the policy P’ given these value 
functions

– If P’ = P then return P

109

Or solve the set of linear equations:
(often a sparse system)
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In many problems, e.g., the robot 
navigation example, histories are 
potentially unbounded and the same 
state can be reached many times

One trick:
Use discounting to make an infinite
horizon problem mathematically
tractable

What if the robot lives forever?

Advanced 
topic



Value Iteration: Summary
– Initialize state values (expected utilities) 

randomly
– Repeatedly update state values using best 

action, according to current approximation of 
state values

– Terminate when state values stabilize
– Resulting policy will be the best policy because 

it’s based on accurate state value estimation
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Policy Iteration: Summary
– Initialize policy randomly
– Repeatedly update state values using best action, 
according to current approximation of state values
– Then update policy based on new state values
– Terminate when policy stabilizes
– Resulting policy is the best policy, but state values 
may not be accurate (may not have converged yet)
– Policy iteration is often faster (because we don’t 
have to get the state values right)
• Both methods have a major weakness:  They require us to 

know the transition function exactly in advance!
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Exploration vs. Exploitation

• Problem with naïve reinforcement learning:
– What action to take?
– Best apparent action, based

on learning to date
• Greedy strategy
• Often prematurely converges to a suboptimal policy!

– Random (or unknown) action
• Will cover entire state space
• Very expensive and slow to learn!
• When to stop being random?

– Balance exploration (try random actions) with 
exploitation (use best action so far)

} Exploitation

} Exploration



More on Exploration

• Agent may sometimes choose to explore suboptimal 
moves in hopes of finding better outcomes
– Only by visiting all states frequently enough can we 

guarantee learning the true values of all the states
• When the agent is learning, ideal would be to get 

accurate values for all states
– Even though that may mean getting a negative outcome

• When agent is performing, ideal would be to get 
optimal outcome

• A learning agent should have an exploration policy
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Exploration Policy

• Wacky approach (exploration): act randomly in hopes 
of eventually exploring entire environment
– Choose any legal checkers move

• Greedy approach (exploitation): act to maximize utility 
using current estimate
– Choose moves that have in the past led to wins

• Reasonable balance: act more wacky (exploratory) 
when agent has little idea of environment; more 
greedy when the model is close to correct
– Suppose you know no checkers strategy?
– What’s the best way to get better?
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Overview: Learning Strategies

Dynamic Programming

Q-learning

Monte Carlo approaches



Q-learning

𝑄: 𝑠, 𝑎 → ℝ
Goal: learn a function that 

computes a “goodness” score 
for taking a particular action 𝑎 

in state 𝑠 



Q-learning

previous algorithms: on-policy algorithms
start with a random policy, iteratively improve
converge to optimal

Q-learning: off-policy
use any policy to estimate Q

Q directly approximates Q* (Bellman optimality equation)
independent of the policy being followed
only requirement: keep updating each (s,a) pair

Slide courtesy/adapted: Peter Bodík
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Deep/Neural Q-learning

𝑄 𝑠, 𝑎; 𝜃 ≈ 𝑄∗(𝑠, 𝑎)
desired optimal solutionneural network

Approach: Form (and learn) 
a neural network to model 

our optimal Q function

Learn weights 
(parameters) 𝜃 of our 

neural network



Overview: Learning Strategies

Dynamic Programming

Q-learning

Monte Carlo approaches



Monte Carlo policy evaluation

want to estimate Vp(s)don’t need full 
knowledge of 

environment (just 
(simulated) experience)

Slide courtesy/adapted: Peter Bodík



Monte Carlo policy evaluation
want to estimate Vp(s)

expected return starting from s 
and following p

estimate as average of 
observed returns in state s

s0
s s

+1 -2 0 +1 -3 +5
R1(s) = +2

s0
s0
s0
s0
s0

R2(s) = +1
R3(s) = -5

R4(s) = +4

Vp(s) ≈ (2 + 1 – 5 + 4)/4 = 0.5

don’t need full 
knowledge of 

environment (just 
(simulated) experience)

Slide courtesy/adapted: Peter Bodík



Maintaining exploration
key ingredient of RL

deterministic/greedy policy won’t explore all actions
don’t know anything about the environment at the beginning
need to try all actions to find the optimal one

maintain exploration
use soft policies instead: p(s,a)>0 (for all s,a)

ε-greedy policy
with probability 1-ε perform the optimal/greedy action
with probability ε perform a random action

will keep exploring the environment
slowly move it towards greedy policy: ε -> 0

Slide courtesy/adapted: Peter Bodík



RL Summary 1:

• Reinforcement learning systems
– Learn series of actions or decisions, rather than a 

single decision
– Based on feedback given at the end of the series

• A reinforcement learner has
– A goal
– Carries out trial-and-error search 
– Finds the best paths toward that goal
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RL Summary 2:

• A typical reinforcement learning system is an 
active agent, interacting with its environment.

• It must balance:
– Exploration: trying different actions and sequences of 

actions to discover which ones work best
– Exploitation (achievement): using sequences which 

have worked well so far

• Must learn successful sequences of actions in an 
uncertain environment
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RL Summary 3

• Very hot area of research at the moment
• There are many more sophisticated RL 

algorithms 
– Most notably: probabilistic approaches

• Applicable to game-playing, search, finance, 
robot control, driving, scheduling, diagnosis, …
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Utility Function
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• [4,3] provides power supply
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Utility Function
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• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] and [4,2] are terminal states
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Utility Function
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• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] and [4,2] are terminal states
• Histories have utility!
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Utility of a History

145

• [4,3] provides power supply
• [4,2] is a sand area from which the robot cannot escape
• The robot needs to recharge its batteries
• [4,3] or [4,2] are terminal states 
• Histories have utility!
• The utility of a history is defined by the utility of the last 
   state (+1 or –1) minus n/25, where n is the number of moves

• Many utility functions possible, for many kinds of problems.
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Utility of an Action Sequence
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• Consider the action sequence (U,R) from [3,2]



Utility of an Action Sequence
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[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability



Utility of an Action Sequence
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• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability
• The utility of the sequence is the expected utility of the histories:
                                    U = ShUh P(h)
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[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]
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[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability
• The utility of the sequence is the expected utility of the histories:
                                    U = ShUh P(h)
• The optimal sequence is the one with maximal utility



Optimal Action Sequence
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• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability
• The utility of the sequence is the expected utility of the histories
• The optimal sequence is the one with maximal utility
• But is the optimal action sequence what we want to 
  compute?
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[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]



Optimal Action Sequence
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• Consider the action sequence (U,R) from [3,2]
• A run produces one of 7 possible histories, each with some probability
• The utility of the sequence is the expected utility of the histories
• The optimal sequence is the one with maximal utility
• But is the optimal action sequence what we want to 
  compute?
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[3,2]

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

only if the sequence is executed blindly! 


