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Supervised Learning

» A hypothesis or a prediction function is function h: X — Y

» X is an image, and ) contains “cat” or “not.”
» X is a text snippet, and ) contains “hate speech” or “not.”
» X is house data, and ) could be the price.

> A training set is a set of pairs {(x(1), y() ... (x(n) y(n)
st. xXV e X and y) e Y fori=1,...,n.

» Given a training set our goal is to produce a good prediction
function h

» Defining “good” will take us a bit. It's a modeling question!
» We will want to use h on new data not in the training set.

» If ) is continuous, then called a regression problem.

» If )V is discrete, then called a classification problem.



How do we represent h? (One popular choice)

h(x) = 0y + 01x1 is an affine function



Visual version of linear regression
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Let hy(x) = Zf:o 0;ix; want to choose 6 so that hy(x) ~ y. One
popular idea called least squares
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Choose
¢ = argmin J(0).
0



Solving the least squares optimization problem.



Gradient Descent

(0 =0

— J(6) for j=0,....d.

(t+1) __ p(t)
Hj —Qj — aﬁﬁj



Gradient Descent Computation

(1) _ g _ 9 a0 for i —
0 4 ozaejJ(H ) for j=0,...,d.

Note that « is called the learning rate or step size.

Let's compute the derivatives. ..
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Gradient Descent Computation

(1) _ g _ 9 a0 for i —
0 4 ozaejJ(Q ) for j=0,...,d.

Note that « is called the learning rate or step size.

Let's compute the derivatives. ..
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For our particular hg we have:

0
hg(X) = Ogxo + 01x1 + -+ + 04xy4 SO %hg(x) = Xj
J



Gradient Descent Computation

Thus, our update rule for component j can be written:

1 ! i i ]
QJ(H ) — Hft) — ozz (he(x( )) — y( )> XJ( ).

=1



Supervised Learning and Classification

» Linear Regression via a Probabilistic Interpretation
» Logistic Regression
» Optimization Method: Newton's Method

We'll learn the maximum likelihood method (a probabilistic
interpretation) to generalize from linear regression to more
sophisticated models.




Notation for Guassians in our Problem

Recall in our model,
y =07 x) 4+ c()in which e ~ NV (0, 62) ....... (11.1)

or more compactly notation:
(i) (). T 2
yW I x\0~ N(07 x, 0%) ., (11.2)

equivalently, Probability distribution over y(i)’ given x1) and parameterized by 0

P (v x;6) = L oo {_(y(")-x(")H)Z} ...... (11.3)

o\ 2T

» We condition on x{/).
» In contrast, f parameterizes or “picks’ a distribution.

We use bar (|) versus semicolon (;) notation above.




(Log) Likelihoods!

Intuition: among many distributions, pick the one that agrees with
the data the most (is most “likely” ).

L(0) =p(y|X;0) Hp ()| x(1). 9) iid assumption

{ (x(Ng — y(D)2 }
:H Py~ 2
=1 TV T 20

For convenience, we use the Log Likelihood ¢(0) = log L(8).

(g — (1))2
Zlog o _(X 0—y\")

T 20‘2

1 1 <, . 1

_ _ Ng — ()2 — _ =
—=nlog = 392 §_::(X< 0 —y'")? = Clo,n) — —J(0)
where C(o,n) = nlog J\}%.




(Log) Likelihoods!

maximizing

So we've shown that finding a 6 to maximize L(0) is the same as

1
0(6) = Clovn) — ()
Or minimizing, J(6) directly (why?)

QA
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Graph of Iris Dataset with logistic regression



Logistic Regression: Link Functions

Given a training set {(x(), y()) for i =1,...,n} let y() € {0,1}.
Want hg(x) € [0,1]. Let's pick a smooth function:

ho(x) = g(8" x)
Here, g is a link function. There are many. .. but we'll pick one!

8(2) = ; +1e_z. SIGMOID

How do we interpret hy(x)?

Ply =1]x;0) = he(x)
Ply =0]x;6) =1~ hy(x)

0.5




Logistic Regression: Link Functions

Let's write the Likelihood function. Recall:

P(y = 1] x;0) =hg(x)
P(y =0 x;0) =1 — hy(x)

Then,
L(6) =P(y | X;0) = Hp (| x1; 6)

= H hg(x(i))y(i)(l — hg(x(i)))l_y(i) exponents encode “if-then”
i=1

Taking logs to compute the log likelihood £(#) we have:

((0) = log L(0) = zn:y(’) log ha(x\7) + (1 — y1D) log(1 — hy(x'?))
=1



Now to solve it. ..

((6) = log L(0) = iy“) log h(x\)) + (1 — y) log(1 — hy(x')))
i=1

We maximize for 6 but we already saw how to do this! Just
compute derivative, run (S)GD and you're done with it!

PN G



Optimization Method Summary

Compute per Step  Number of Steps

Method to convergence
SGD 0(d) ~€ 2
Minibatch SGD
GD 0(nd) ~ ¢
Newton Q(nd?) ~log(1/€e)

» In classical stats, d is small (< 100), n is often small, and
exact parameters matter

» In modern ML, d is huge (billions, trillions), n is huge
(trillions), and parameters used only for prediction

» These are approximate number of computing steps

» Convergence happens when loss settles to within an error range
around the final value.

» Newton would be very fast, where SGD needs a lot of step, but
individual steps are fast, makes up for it

» As a result, (minibatch) SGD is the workhorse of ML.



1 vs All

Red class vs green and blue

Green class vs red and blue
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Multiclass

Suppose we want to choose among k discrete values, e.g.,
{'Cat’, 'Dog’, 'Car','Bus'} so k = 4.

We encode with one-hot vectors i.e. y € {0,1}* and ijzlyj = 1.

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

‘Cat’ 'Dog’ ‘Car’ ‘Bus’

A prediction here is actually a distribution over the k classes. This
leads to the SOFTMAX function described below (derivation in the
notes!). That is our hypothesis is a vector of k values:
_ exp(0] x)
x;0) = —¢ / :
>i—1 exp(6] x)

Here each 0, has the same dimension as x, i.e., x,0; € RtL for
j=1,... k.

Py =J




How do you train multiclass?
Fixing x and 6, our output is a vector p € Rfj s.t. Zjlle p;i = 1.
exp(Qij)
. :
S exp(67 %)

Formally, we maximize the probability of the given class!
We can view as CROSSENTROPY:

pi=Ply =jlx;0) =

CROSSENTROPY(p, p Z p(x = j)log p(x = j).

Here, p is the label, which is a one-hot vector.Thus, if the label is
I, this formula reduces to:

exp(0 x)

—log p(x = i) = —log ——— -
ZJ:]_ eXp(HjTX)

We minimize this—and you've seen the movie, it works the same as
the others!




Summary for binary classification/ logistic
regression

* Calculate hg(x) = g(07x)
* Get P(y | X; 0) using hg(x), that’s likelihood
* Calculate log likelihood from there

* Maximize log likelihood from there —
use SGD to maximize for 6
 Start with a guess for 6
» Keep updating with the rule until convergence

Discriminative Approach



Predicted
Output

inference hg(x) is the output.

learn max log p(y | x; 8) by maximum likelihood.

algorithm: SGD  9(tt1) = ¢(t) 4 o (y(i) — hye) (x(i))) x(7),



P(BIA) ™ P(A)

Other Forms of Bayes Rule p@|B) = -5

. P(B| A)P(4)
 P(B| A)P(A)+ P(B~ A)P(~ A)

P(41B)

P(B|ANX)P(AAKX)
P(B A X)

P(A|B A X) =



Discriminative vs Generative Models

Discriminative Models Generative Models

Directly learn the function Calculate
mapping P(y|X)
h: X - y from P(X|y) and P(y)
or, Calculate likelihood
P(y|X) But Joint Distribution
P(X,y) = P(X|y) P(y)

1. Assume some functional 1. Assume some functional form

form for P(y|X) for P(y), P(X|y)
2. Estimate parameters 2. Estimate parameters of P(X|y), P(y) directly

of P(y|X) directly from from training data

training data 3. Use Bayes rule to calculate P(y | X)



How many parameters must we estimate?
GIPBON ~c-roe_ivoes i o _rioocimm
f h

Suppose X =<X1a--- Xn> ! E :40.5 ( :21\ p ) ’)_, ,
’ M <40.5 23\ T 7 |[—
where X, and Y are boolean RV' s | w 405 3 :f/z\/
A
To estimat P(Y|KX1, Xy, oo X,
I —
1}’1

If we have 30 X" s instead of 27?

230/‘/ [ E)”)Oi’l



Can we reduce params using Bayes Rule?

Suppose X =<X,,... Xn'> P(X|Y)P(Y)

P(Y|X) =

where X, and Y are boolean RV’ s P(X)

How many parameters to define P(X,,... X, |Y)?

P(X[Y=1) - 20 - 1
P(X|Y=0) - 2" - 1

How many parameters to define P(Y)?



Can we reduce params using Bayes Rule?

S X =<X,,... X,> 1@
where X, and Y are boolean RV' s P(X)

how matty wmmsg«( P(?(("an\o (QVLQZ

o w Moy A{ PCY> - L



Naive Bayes in a Nutshell

Bayes rule:

P(Y = P(Xq...Xn|lY =
P(Y:yk’Xl---Xn)z ( yk) ( 1 n| yk)

> P(Y = y))P(X1... XnlY = y;)

Assuming conditional independence among X.’ s:
P(Y = yg) II; P(X;]Y = yg)
> P(Y = y;) II; P(XGY = y;)

P(Y = yp|X1... Xn) =

S0, to pick most probable Y for x»v=<Xx,, .., X >
Y% arg max P(Y = yp) [[ P(XTY)Y = yg)
k :
1



Principles for Estimating Probabilities

Principle 1 (maximum likelihood):

* choose parameters 6 that maximize
P(data | ©)

Principle 2 (maximum a posteriori prob.):
* choose parameters 6 that maximize
P(0 | data) = P(data | 6) P(0)
P(data)




Maximum Likelihood Estimation

[E(ﬂ) =_e:l P(X=0) = (1-6)

DataD: =Ll © O Y
S Lo o
P(D\D): 9.()-9).(1—@7-5.@' — @ (/'O) &

Flips produce data D with (Y1 heads, OV tails )
- flips are independent, identically distributed 1's and 0’s

(Bernoulli)
« (X1 and (X() are counts that sum these outcomes (Binomial)

P(DI0) = P(ay, agl6) = 61 (1 — )™




Maximum Likelihood Estimate for ©

" A
: 0 = arg meax In P(D | 9)
= arg meax INnOH (1 — 6)T

= Set derivative to zero: |4 | P(D | 0) = 0

[C. Guestrin]



A

H = arg mélx In P(D|9) = Set derivative to zero: d% In P(D | 0) = 0

B > o _ dolnf 1
= argmgax In [9 (1 — 9) 0] hint: —,~ =4 s

o
S—O: O("\q@+o(b/w/('9>

o(]ﬁl___ + o Plnl1-@)
° e
a/u(f—ﬁ) ‘09((—@7

:_blli_ Ojo ?(”93& 2
O 5 T-o k/\’/\/ @J




Summary:
Maximum Likelihood Estimate

P(X=1)=0
P(X=0)=1-0
(Bernoulli)

e Each flip yields boolean value for X
X ~ Bernoulli: P(X) = 6X(1—6)0—%)

e Data set D of independent, identically distributed (iid) flips pro-
duces oy ones, «y zeros (Binomial)

P(D|0) = P(ay, aglf) = 071(1 — 6)“0

OMLE — argmaxy P(D|6) = —

a1+



Beta prior distribution — P(0)
| 0%H—1(1 — g)Pr-1
BBy, Br)

m Likelihood function: P(D|0) = 6“1 (1 —0)“T

m Posterior: P(0 | D) « P(D|0)P(h)

P(0) = ~ Beta.(ﬂH, 3T)



Beta prior distribution — P(0)

~ Beta(By, Br)

= Likelihood function: P(D |6)

= Posterior: P(¢ D) x |P(D |

> é-(/ 974 s

O ~ T<¢H+ﬂl—)’}>
&H"ﬁvfb - @{T’Lﬁﬂr—D




Eg. 2 Dice roll problem (6 outcomes instead of 2)
Likelihood is ~ Multinomial(0 = {0, O, ..., O,})
P(D|0) =07%052...0,*
If prior is Dirichlet distribution,
Ceher e
B(By, ..., Br)
Then posterior is Dirichlet distribution
P(6|D) ~ Dirichlet(81 + a1, ..., Bk + a)
and MAP estimate is therefore
~ MAP o, + 05, — 1

0, -
Zj:l (aj +B; — 1)

P(9)

~ Dirichlet(fy, . ..



Estimating Parameters: Y, X. discrete-valued

Maximum likelihood estimates:
_ #D{Y =y}
| D|

. UD{X; = 2; AY =y
g = DXy = a5lY =) = {#D{YJ: Uk} }

7, = P(Y = y)

MAP estimates (Beta, Dirichlet priors):

B —— | Only difference:
e =P(Y =y) = #DLY = yet + (B — 1) — “imaginary” examples

D]+ 3 (B — 1)

. D{Xi==z; \Y = v —1
Oijr = P(Xi = z;|Y = yx) = 7 #{D{Y iJ:t//;\g} + Zg{k}(;m(ékl) )




What if we have continuous X, 7

Eg., image classification: X is it" pixel

Gaussian Naive Bayes (GNB): assume

—(z—pip)?

1 20.2

P(X, =m=x|Y = = e 1k
(’L | yk) O'ik\/%

Sometimes assume g,

* isindependent of Y (i.e., o)),
 or independent of X (i.e., g;)
« or both (i.e., 0)



Gaussian Naive Bayes Algorithm — continuous X,
(but still discrete Y)

* Train Nalve Bayes (examples)
for each value y,
estimate® 7, = P(Y = y;.)
for each attribute X, estimate
class conditional mean UKk, variance 0k

 Classify (X"v)
YW  arg r@gx P(Y = yk:) HP(X?ew‘Y = yk,)

1

Y%  arg max . my [ Normal (XY, ik, oi1)
)

" probabilities must sum to 1, so need estimate only n-1 parameters...



Go through the sample midterm questions,
specifically for bias-variance, regularization, kernel,
SVM, and conditional probabilities

Go through the homework, know how to estimate
parameters in different manners

Read the lecture notes for bias-variance,
regularization, and kernel (on top of the review
slides).

Read the SVM slides, not included in this
discussion



Best of Luck!



