CMSC 478 Machine Learning

KMA Solaiman ksolaima@umbc.edu

Midterm Review

Supervised Learning

- ► A hypothesis or a prediction function is function $h : X \to Y$
 - \blacktriangleright \mathcal{X} is an image, and \mathcal{Y} contains "cat" or "not."
 - \blacktriangleright \mathcal{X} is a text snippet, and \mathcal{Y} contains "hate speech" or "not."
 - \blacktriangleright \mathcal{X} is house data, and \mathcal{Y} could be the price.
- A training set is a set of pairs $\{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})$ s.t. $x^{(i)} \in \mathcal{X}$ and $y^{(i)} \in \mathcal{Y}$ for $i = 1, \dots, n$.
- Given a training set our goal is to produce a good prediction function h
 - Defining "good" will take us a bit. It's a modeling question!
 - We will want to use h on new data not in the training set.

- If \mathcal{Y} is continuous, then called a *regression problem*.
- \blacktriangleright If \mathcal{Y} is discrete, then called a *classification problem*.

How do we represent h? (One popular choice)

 $h(x) = \theta_0 + \theta_1 x_1$ is an affine function

Visual version of linear regression

Let $h_{\theta}(x) = \sum_{j=0}^{d} \theta_j x_j$ want to choose θ so that $h_{\theta}(x) \approx y$. One popular idea called **least squares**

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}.$$

Choose

$$\theta = \operatorname*{argmin}_{\theta} J(\theta).$$

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへで

Solving the least squares optimization problem.

Gradient Descent

$$\begin{aligned} \theta^{(0)} &= 0 \\ \theta^{(t+1)}_j &= \theta^{(t)}_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta^{(t)}) \qquad \text{for } j = 0, \dots, d. \end{aligned}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ め∢⊙

Gradient Descent Computation

$$\theta_j^{(t+1)} = \theta_j^{(t)} - \alpha \frac{\partial}{\partial \theta_j} J(\theta^{(t)}) \text{ for } j = 0, \dots, d.$$

Note that α is called the **learning rate** or **step size**.

Let's compute the derivatives...

$$\begin{split} \frac{\partial}{\partial \theta_j} J(\theta^{(t)}) &= \sum_{i=1}^n \frac{1}{2} \frac{\partial}{\partial \theta_j} \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2 \\ &= \sum_{i=1}^n \left(h_\theta(x^{(i)}) - y^{(i)} \right) \frac{\partial}{\partial \theta_j} h_\theta(x^{(i)}) \end{split}$$

< ロ > < 回 > < 三 > < 三 > < 三 > < 回 > < < ○ < ○

Gradient Descent Computation

$$\theta_j^{(t+1)} = \theta_j^{(t)} - \alpha \frac{\partial}{\partial \theta_j} J(\theta^{(t)}) \text{ for } j = 0, \dots, d.$$

Note that α is called the **learning rate** or **step size**.

Let's compute the derivatives...

$$\frac{\partial}{\partial \theta_j} J(\theta^{(t)}) = \sum_{i=1}^n \frac{1}{2} \frac{\partial}{\partial \theta_j} \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2$$
$$= \sum_{i=1}^n \left(h_\theta(x^{(i)}) - y^{(i)} \right) \frac{\partial}{\partial \theta_j} h_\theta(x^{(i)})$$

For our *particular* h_{θ} we have:

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_d x_d \text{ so } \frac{\partial}{\partial \theta_j} h_{\theta}(x) = x_j$$

Gradient Descent Computation

Thus, our update rule for component j can be written:

$$\theta_j^{(t+1)} = \theta_j^{(t)} - \alpha \sum_{i=1}^n \left(h_\theta(x^{(i)}) - y^{(i)} \right) x_j^{(i)}.$$

Supervised Learning and Classification

- Linear Regression via a Probabilistic Interpretation
- Logistic Regression
- Optimization Method: Newton's Method

We'll learn the maximum likelihood method (a probabilistic interpretation) to generalize from linear regression to more sophisticated models.

Notation for Guassians in our Problem

Recall in our model,

$$y^{(i)} = \theta^T x^{(i)} + \varepsilon^{(i)}$$
 in which $\varepsilon^{(i)} \sim \mathcal{N}(0, \sigma^2)$ (11.1)

or more compactly notation:

$$y^{(i)} \mid x^{(i)}; \theta \sim \mathcal{N}(\theta^T x, \sigma^2)$$
.....(11.2)

equivalently, Probability distribution over $y^{(i)}$, given $x^{(i)}$ and parameterized by θ

$$P\left(y^{(i)} \mid x^{(i)}; \theta\right) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{\left(y^{(i)} - x^{(i)}\theta\right)^2}{2\sigma^2}\right\} \dots \dots (11.3)$$

We condition on x⁽ⁱ⁾.
 In contrast, θ parameterizes or "picks" a distribution.
 We use bar (|) versus semicolon (;) notation above.

(Log) Likelihoods!

Intuition: among many distributions, pick the one that agrees with the data the most (is most "likely").

$$L(\theta) = p(y|X;\theta) = \prod_{i=1}^{n} p(y^{(i)} | x^{(i)};\theta) \quad \text{iid assumption}$$
$$= \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x^{(i)}\theta - y^{(i)})^2}{2\sigma^2}\right\}$$

For convenience, we use the Log Likelihood $\ell(\theta) = \log L(\theta)$.

$$\ell(\theta) = \sum_{i=1}^{n} \log \frac{1}{\sigma\sqrt{2\pi}} - \frac{(x^{(i)}\theta - y^{(i)})^2}{2\sigma^2}$$
$$= n \log \frac{1}{\sigma\sqrt{2\pi}} - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x^{(i)}\theta - y^{(i)})^2 = C(\sigma, n) - \frac{1}{\sigma^2} J(\theta)$$

where $C(\sigma, n) = n \log \frac{1}{\sigma \sqrt{2\pi}}$.

(Log) Likelihoods!

So we've shown that finding a θ to maximize $L(\theta)$ is the same as *maximizing*

$$\ell(\theta) = C(\sigma, n) - \frac{1}{\sigma^2}J(\theta)$$

Or minimizing, $J(\theta)$ directly (why?)

Takeaway: "Under the hood," solving least squares *is* solving a maximum likelihood problem for a particular probabilistic model.

This view shows a path to generalize to new situations!

Graph of Iris Dataset with logistic regression

Logistic Regression: Link Functions

Given a training set $\{(x^{(i)}, y^{(i)}) \text{ for } i = 1, ..., n\}$ let $y^{(i)} \in \{0, 1\}$. Want $h_{\theta}(x) \in [0, 1]$. Let's pick a smooth function:

$$h_{\theta}(x) = g(\theta^{T} x)$$

Here, g is a link function. There are many... but we'll pick one!

$$g(z) = rac{1}{1+e^{-z}}$$
. SIGMOID

How do we interpret $h_{\theta}(x)$?

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$

 $P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ▶

Logistic Regression: Link Functions

Let's write the Likelihood function. Recall:

$$P(y = 1 \mid x; \theta) = h_{\theta}(x)$$
$$P(y = 0 \mid x; \theta) = 1 - h_{\theta}(x)$$

Then,

$$L(\theta) = P(y \mid X; \theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \theta)$$
$$= \prod_{i=1}^{n} h_{\theta}(x^{(i)})^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1-y^{(i)}} \quad \text{exponents encode "if-then"}$$

Taking logs to compute the log likelihood $\ell(\theta)$ we have:

$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^{n} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Now to solve it...

$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^{n} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

We maximize for θ but we already saw how to do this! Just compute derivative, run (S)GD and you're done with it!

Takeaway: This is *another* example of the max likelihood method: we setup the likelihood, take logs, and compute derivatives.

Optimization Method Summary

	Compute per Step	Number of Steps
Method		to convergence
SGD	$\theta(d)$	≈ € ⁻²
Minibatch SGD		
GD	$\theta(nd)$	≈ € ⁻¹
Newton	$\Omega(nd^2)$	$\approx \log(1/\epsilon)$

- In classical stats, d is small (< 100), n is often small, and exact parameters matter
- In modern ML, d is huge (billions, trillions), n is huge (trillions), and parameters used only for prediction
 - > These are approximate number of computing steps
 - Convergence happens when loss settles to within an error range around the final value.
 - Newton would be very fast, where SGD needs a lot of step, but individual steps are fast, makes up for it
- ► As a result, (minibatch) SGD is the *workhorse* of ML.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ ∃ ∽9∢⊙

1 vs All

Multiclass

Suppose we want to choose among k discrete values, e.g., $\{'Cat', 'Dog', 'Car', 'Bus'\}$ so k = 4.

We encode with **one-hot** vectors i.e. $y \in \{0,1\}^k$ and $\sum_{j=1}^k y_j = 1$.

$$\begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix} \quad \begin{pmatrix} 0\\1\\0\\0\\0 \end{pmatrix} \quad \begin{pmatrix} 0\\0\\1\\0\\1 \end{pmatrix} \quad \begin{pmatrix} 0\\0\\0\\1\\0 \end{pmatrix} \\ `Cat' \quad `Dog' \quad `Car' \quad `Bus'$$

A prediction here is actually a *distribution* over the k classes. This leads to the SOFTMAX function described below (derivation in the notes!). That is our hypothesis is a vector of k values:

$$P(y = j | x; \overline{\theta}) = \frac{\exp(\theta_j^T x)}{\sum_{i=1}^k \exp(\theta_i^T x)}.$$

Here each θ_j has the same dimension as x, i.e., $x, \theta_j \in \mathbb{R}^{d+1}$ for $j = 1, \ldots, k$.

How do you train multiclass?

Fixing x and θ , our output is a vector $\hat{p} \in \mathbb{R}^k_+$ s.t. $\sum_{j=1}^k \hat{p}_j = 1$.

$$\hat{p}_j = P(y = j | x; \theta) = \frac{\exp(\theta_j^T x)}{\sum_{i=1}^k \exp(\theta_i^T x)}.$$

Formally, we maximize the probability of the given class! We can view as CROSSENTROPY:

CROSSENTROPY
$$(p, \hat{p}) = -\sum_{j} p(x=j) \log \hat{p}(x=j).$$

Here, p is the label, which is a one-hot vector. Thus, if the label is i, this formula reduces to:

$$-\log \hat{p}(x=i) = -\log \frac{\exp(\theta_i^T x)}{\sum_{j=1}^k \exp(\theta_j^T x)}$$

We minimize this—and you've seen the movie, it works the same as the others!

Summary for binary classification/ logistic regression

- Calculate $h_{\theta}(x) = g(\theta^T x)$
- Get $P(y | X; \theta)$ using $h_{\theta}(x)$, that's likelihood
- Calculate log likelihood from there
- Maximize log likelihood from the re – use SGD to maximize for θ
 - Start with a guess for $\boldsymbol{\theta}$
 - Keep updating with the rule until convergence

Discriminative Approach

Other Forms of Bayes Rule
$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$

$$P(A | B) = \frac{P(B | A)P(A)}{P(B | A)P(A) + P(B | \sim A)P(\sim A)}$$

$$P(A | B \land X) = \frac{P(B | A \land X)P(A \land X)}{P(B \land X)}$$

Discriminative vs Generative Models

Discriminative Models	Generative Models
Directly learn the function mapping $h: X \rightarrow y$ or, Calculate likelihood P(y X)	Calculate P(y X) from $P(X y)$ and $P(y)$ But Joint Distribution P(X, y) = P(X y) P(y)
 Assume some functional form for P(y X) Estimate parameters of P(y X) directly from training data 	 Assume some functional form for P(y), P(X y) Estimate parameters of P(X y), P(y) directly from training data Use Bayes rule to calculate P(y X)

Can we reduce params using Bayes Rule?

Suppose X =<X₁,... X_n> where X_i and Y are boolean RV's $P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$

How many parameters to define $P(X_1, ..., X_n | Y)$?

How many parameters to define P(Y)?

Can we reduce params using Bayes Rule? Suppose X =<X₁,... X_n> where X_i and Y are boolean RV's $P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$

how many params for
$$P(X_1 \cdot X_n | Y) (2^n 1) \cdot 2$$

how many for $P(Y) = 1$

Naïve Bayes in a Nutshell

Bayes rule:

$$P(Y = y_k | X_1 \dots X_n) = \frac{P(Y = y_k) P(X_1 \dots X_n | Y = y_k)}{\sum_j P(Y = y_j) P(X_1 \dots X_n | Y = y_j)}$$

Assuming conditional independence among X_i's:

$$P(Y = y_k | X_1 \dots X_n) = \frac{P(Y = y_k) \prod_i P(X_i | Y = y_k)}{\sum_j P(Y = y_j) \prod_i P(X_i | Y = y_j)}$$

So, to pick most probable Y for $X^{new} = \langle X_1, ..., X_n \rangle$ $Y^{new} \leftarrow \arg \max_{y_k} P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$

Principles for Estimating Probabilities

Principle 1 (maximum likelihood):

choose parameters θ that maximize
 P(data | θ)

Principle 2 (maximum a posteriori prob.):

• choose parameters θ that maximize $P(\theta \mid data) = P(data \mid \theta) P(\theta)$ P(data)

Flips produce data D with $lpha_1$ heads, $lpha_0$ tails

- flips are independent, identically distributed 1's and 0's (Bernoulli)
- $lpha_1$ and $lpha_0$ are counts that sum these outcomes (Binomial)

$$P(D|\theta) = P(\alpha_1, \alpha_0|\theta) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}$$

Set derivative to zero:

$$\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = 0$$

[C. Guestrin]

$$\hat{\theta} = \arg \max_{\theta} \ln P(D|\theta) \quad \text{set derivative to zero:} \quad \frac{d}{d\theta} \ln P(D|\theta) = 0$$

$$= \arg \max_{\theta} \ln \left[\left[\theta^{\alpha} \right] (1 - \theta)^{\alpha_0} \right] \quad \text{hint:} \quad \frac{\partial \ln \theta}{\partial \theta} = \frac{1}{\theta} \right]$$

$$\stackrel{\partial}{=} \alpha, \ln \theta + \alpha, \ln \left((-\theta) \right) \quad \text{hint:} \quad \frac{\partial \ln \theta}{\partial \theta} = \frac{1}{\theta} \right]$$

$$\int_{-\infty}^{\infty} \alpha, \ln \theta + \alpha, \ln \left((-\theta) \right) \quad \frac{\partial \ln (1 - \theta)}{\partial \theta} \quad \frac{\partial \ln (1 - \theta)}{\partial \theta} \quad \frac{\partial \ln (1 - \theta)}{\partial \theta} \quad \frac{\partial (1 - \theta)}{\partial \theta} \quad$$

Summary: Maximum Likelihood Estimate

• Each flip yields boolean value for X

 $X \sim \text{Bernoulli: } P(X) = \theta^X (1 - \theta)^{(1-X)}$

• Data set D of independent, identically distributed (iid) flips produces α_1 ones, α_0 zeros (Binomial)

 $P(D|\theta) = P(\alpha_1, \alpha_0|\theta) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}$

$$\hat{\theta}^{MLE} = \operatorname{argmax}_{\theta} P(D|\theta) = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

Beta prior distribution – $P(\theta)$

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

• Likelihood function: $P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$

• Posterior: $P(\theta \mid D) \propto P(D \mid \theta)P(\theta)$

 $A M A P = (\alpha_{H} + \beta_{H} - 1)$ $(A_{+}+B_{+}-1) + (A_{+}+B_{+}-1)$

Eg. 2 Dice roll problem (6 outcomes instead of 2) Likelihood is ~ Multinomial($\theta = \{\theta_1, \theta_2, ..., \theta_k\}$)

$$P(\mathcal{D} \mid \theta) = \theta_1^{\alpha_1} \theta_2^{\alpha_2} \dots \theta_k^{\alpha_k}$$

If prior is Dirichlet distribution,

$$P(\theta) = \frac{\theta_1^{\beta_1 - 1} \ \theta_2^{\beta_2 - 1} \dots \theta_k^{\beta_k - 1}}{B(\beta_1, \dots, \beta_k)} \sim \text{Dirichlet}(\beta_1, \dots, \beta_k)$$

Then posterior is Dirichlet distribution

$$P(\theta|D) \sim \mathsf{Dirichlet}(\beta_1 + \alpha_1, \dots, \beta_k + \alpha_k)$$

and MAP estimate is therefore

$$\hat{\theta_i}^{MAP} = \frac{\alpha_i + \beta_i - 1}{\sum_{j=1}^k (\alpha_j + \beta_j - 1)}$$

Estimating Parameters: *Y*, *X_i* discrete-valued

Maximum likelihood estimates:

$$\hat{\pi}_{k} = \hat{P}(Y = y_{k}) = \frac{\#D\{Y = y_{k}\}}{|D|}$$
$$\hat{\theta}_{ijk} = \hat{P}(X_{i} = x_{j}|Y = y_{k}) = \frac{\#D\{X_{i} = x_{j} \land Y = y_{k}\}}{\#D\{Y = y_{k}\}}$$

MAP estimates (Beta, Dirichlet priors):

$$\begin{aligned} \hat{\pi}_{k} &= \hat{P}(Y = y_{k}) = \frac{\#D\{Y = y_{k}\} + (\beta_{k} - 1)}{|D| + \sum_{m}(\beta_{m} - 1)} \end{aligned} \qquad \begin{array}{l} \text{Only difference:} \\ \text{``imaginary'' examples} \end{aligned} \\ \hat{\theta}_{ijk} &= \hat{P}(X_{i} = x_{j}|Y = y_{k}) = \frac{\#D\{X_{i} = x_{j} \land Y = y_{k}\} + (\beta_{k} - 1)}{\#D\{Y = y_{k}\} + \sum_{m}(\beta_{m} - 1)} \end{aligned}$$

What if we have continuous X_i ? Eg., image classification: X_i is ith pixel

Gaussian Naïve Bayes (GNB): assume

$$P(X_i = x \mid Y = y_k) = \frac{1}{\sigma_{ik}\sqrt{2\pi}} e^{\frac{-(x - \mu_{ik})^2}{2\sigma_{ik}^2}}$$

Sometimes assume σ_{ik}

- is independent of Y (i.e., σ_i),
- or independent of X_i (i.e., σ_k)
- or both (i.e., σ)

Gaussian Naïve Bayes Algorithm – continuous X_i (but still discrete Y)

- Train Naïve Bayes (examples) for each value y_k estimate* $\pi_k \equiv P(Y = y_k)$ for each attribute X_i estimate class conditional mean μ_{ik} , variance σ_{ik}
- Classify (X^{new})

$$Y^{new} \leftarrow \arg \max_{y_k} P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$
$$Y^{new} \leftarrow \arg \max_{y_k} \pi_k \prod_i Normal(X_i^{new}, \mu_{ik}, \sigma_{ik})$$

* probabilities must sum to 1, so need estimate only n-1 parameters...

- Go through the sample midterm questions, specifically for bias-variance, regularization, kernel, SVM, and conditional probabilities
- Go through the homework, know how to estimate parameters in different manners
- Read the lecture notes for bias-variance, regularization, and kernel (on top of the review slides).
- Read the SVM slides, not included in this discussion

Best of Luck!