
CMSC 478!
Machine Learning

/M% SSPEMQER
OWSPEMQE$YQFG�IHY

Midterm Review

Supervised Learning

I A hypothesis or a prediction function is function h : X ! Y
I X is an image, and Y contains “cat” or “not.”
I X is a text snippet, and Y contains “hate speech” or “not.”
I X is house data, and Y could be the price.

I A training set is a set of pairs
�
(x (1), y (1)), . . . , (x (n), y (n))

s.t. x (i) 2 X and y (i) 2 Y for i = 1, . . . , n.
I Given a training set our goal is to produce a good prediction

function h
I Defining “good” will take us a bit. It’s a modeling question!
I We will want to use h on new data not in the training set.

I If Y is continuous, then called a regression problem.

I If Y is discrete, then called a classification problem.

How do we represent h? (One popular choice)

h(x) = ✓0 + ✓1x1 is an a�ne function

size
x (1) 2104
x (2) 2500

Price
y (1) 400
y (2) 900

An example prediction?

Notice the prediction is defined by the parameters ✓0 and ✓1. This
is a huge reduction in the space of functions!

Visual version of linear regression

Let h✓(x) =
Pd

j=0 ✓jxj want to choose ✓ so that h✓(x) ⇡ y . One
popular idea called least squares

J(✓) =
1

2

nX

i=1

⇣
h✓(x

(i))� y (i)
⌘2

.

Choose
✓ = argmin

✓
J(✓).

Solving the least squares optimization problem.

Gradient Descent

✓(0) =0

✓(t+1)
j =✓(t)j � ↵

@

@✓j
J(✓(t)) for j = 0, . . . , d .

Gradient Descent Computation

✓(t+1)
j = ✓(t)j � ↵

@

@✓j
J(✓(t)) for j = 0, . . . , d .

Note that ↵ is called the learning rate or step size.

Let’s compute the derivatives. . .

@

@✓j
J(✓(t)) =

nX

i=1

1

2

@

@✓j

⇣
h✓(x

(i))� y (i)
⌘2

=
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘ @

@✓j
h✓(x

(i))

For our particular h✓ we have:

h✓(x) = ✓0x0 + ✓1x1 + · · ·+ ✓dxd so
@

@✓j
h✓(x) = xj

Gradient Descent Computation

✓(t+1)
j = ✓(t)j � ↵

@

@✓j
J(✓(t)) for j = 0, . . . , d .

Note that ↵ is called the learning rate or step size.

Let’s compute the derivatives. . .

@

@✓j
J(✓(t)) =

nX

i=1

1

2

@

@✓j

⇣
h✓(x

(i))� y (i)
⌘2

=
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘ @

@✓j
h✓(x

(i))

For our particular h✓ we have:

h✓(x) = ✓0x0 + ✓1x1 + · · ·+ ✓dxd so
@

@✓j
h✓(x) = xj

Gradient Descent Computation

Thus, our update rule for component j can be written:

✓(t+1)
j = ✓(t)j � ↵

nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i)j .

We write this in vector notation for j = 0, . . . , d as:

✓(t+1) = ✓(t) � ↵
nX

i=1

⇣
h✓(x

(i))� y (i)
⌘
x (i).

Saves us a lot of writing! And easier to understand . . . eventually.

Supervised Learning and Classification

I Linear Regression via a Probabilistic Interpretation

I Logistic Regression

I Optimization Method: Newton’s Method

We’ll learn the maximum likelihood method (a probabilistic
interpretation) to generalize from linear regression to more
sophisticated models.

Notation for Guassians in our Problem
Recall in our model,

y
(i) = ✓T

x
(i) + "(i) in which "(i) ⇠ N (0, �2) .�������� 	����

or more compactly notation:

y
(i) | x (i); ✓ ⇠ N (✓T

x , �2).�������������� 	����

equivalently, 1SPCBCJMJUZ EJTUSJCVUJPO PWFS Z	J

 HJWFO Y	J
 BOE QBSBNFUFSJ[FE CZ Ϧ

P

⇣
y
(i) | x (i); ✓

⌘
=

1

�
p
2⇡

exp

(
�

2��
(y (i) � x	J
Ѣ)2

)

I We condition on x
(i).

I In contrast, ✓ parameterizes or “picks” a distribution.

We use bar (|) versus semicolon (;) notation above.

������ 	����

(Log) Likelihoods!

Intuition: among many distributions, pick the one that agrees with
the data the most (is most “likely”).

L(✓) =p(y |X ; ✓) =
nY

i=1

p(y (i) | x (i); ✓) iid assumption

=
nY

i=1

1

�
p
2⇡

exp

(
�(x (i)✓ � y

(i))2

2�2

)

For convenience, we use the Log Likelihood `(✓) = log L(✓).

`(✓) =
nX

i=1

log
1

�
p
2⇡

� (x (i)✓ � y
(i))2

2�2

=n log
1

�
p
2⇡

� 1

2�2

nX

i=1

(x (i)✓ � y
(i))2 = C (�, n)� 1

�2
J(✓)

where C (�, n) = n log 1
�
p
2⇡
.

(Log) Likelihoods!

So we’ve shown that finding a ✓ to maximize L(✓) is the same as
maximizing

`(✓) = C (�, n)� 1

�2
J(✓)

Or minimizing, J(✓) directly (why?)

Takeaway: “Under the hood,” solving least squares is

solving a maximum likelihood problem for a particular
probabilistic model.

This view shows a path to generalize to new situations!

Logistic Regression: Link Functions

Given a training set {(x (i), y (i)) for i = 1, . . . , n} let y (i) 2 {0, 1}.
Want h✓(x) 2 [0, 1]. Let’s pick a smooth function:

h✓(x) = g(✓T x)

Here, g is a link function. There are many. . . but we’ll pick one!

g(z) =
1

1 + e�z
.

How do we interpret h✓(x)?

P(y = 1 | x ; ✓) = h✓(x)

P(y = 0 | x ; ✓) = 1� h✓(x)

SIGMOID

Logistic Regression: Link Functions

Let’s write the Likelihood function. Recall:

P(y = 1 | x ; ✓) =h✓(x)

P(y = 0 | x ; ✓) =1� h✓(x)

Then,

L(✓) =P(y | X ; ✓) =
nY

i=1

p(y (i) | x (i); ✓)

=
nY

i=1

h✓(x
(i))y

(i)
(1� h✓(x

(i)))1�y (i)
exponents encode “if-then”

Taking logs to compute the log likelihood `(✓) we have:

`(✓) = log L(✓) =
nX

i=1

y
(i) log h✓(x

(i)) + (1� y
(i)) log(1� h✓(x

(i)))

Now to solve it. . .

`(✓) = log L(✓) =
nX

i=1

y
(i) log h✓(x

(i)) + (1� y
(i)) log(1� h✓(x

(i)))

We maximize for ✓ but we already saw how to do this! Just
compute derivative, run (S)GD and you’re done with it!

Takeaway: This is another example of the max likelihood
method: we setup the likelihood, take logs, and compute
derivatives.

Optimization Method Summary

Method

Compute per Step Number of Steps
 UP DPOWFSHFODF

SGD
Minibatch SGD

GD
Newton

I In classical stats, d is small (< 100), n is often small, and
exact parameters matter

I In modern ML, d is huge (billions, trillions), n is huge
(trillions), and parameters used only for prediction
 5IFTF BSF BQQSPYJNBUF OVNCFS PG DPNQVUJOH TUFQT
 $POWFSHFODF IBQQFOT XIFO MPTT TFUUMFT UP XJUIJO BO FSSPS SBOHF

BSPVOE UIF GJOBM WBMVF�
 /FXUPO XPVME CF WFSZ GBTU
 XIFSF 4(% OFFET B MPU PG TUFQ
 CVU

JOEJWJEVBM TUFQT BSF GBTU
 NBLFT VQ GPS JU

I As a result, (minibatch) SGD is the workhorse of ML.

ȵ log	��ϵ

ȵ ϵ ��

ȵ ϵ ��

Ϧ	E

Ϧ	OE

͙	OE�

1 vs All

Multiclass
Suppose we want to choose among k discrete values, e.g.,
{’Cat’, ’Dog’, ’Car’, ’Bus’} so k = 4.

We encode with one-hot vectors i.e. y 2 {0, 1}k and
Pk

j=1 yj = 1.
0

BB@

1
0
0
0

1

CCA

0

BB@

0
1
0
0

1

CCA

0

BB@

0
0
1
0

1

CCA

0

BB@

0
0
0
1

1

CCA

‘Cat’ ‘Dog’ ‘Car’ ‘Bus’

A prediction here is actually a distribution over the k classes. This
leads to the SoftMax function described below (derivation in the
notes!). That is our hypothesis is a vector of k values:

P(y = j |x ; ✓̄) =
exp(✓Tj x)Pk
i=1 exp(✓

T
i x)

.

Here each ✓j has the same dimension as x , i.e., x , ✓j 2 Rd+1 for
j = 1, . . . , k .

How do you train multiclass?

Fixing x and ✓, our output is a vector p̂ 2 Rk
+ s.t.

Pk
j=1 p̂j = 1.

p̂j = P(y = j |x ; ✓) =
exp(✓Tj x)Pk
i=1 exp(✓

T
i x)

.

Formally, we maximize the probability of the given class!
We can view as CrossEntropy:

CrossEntropy(p, p̂) = �
X

j

p(x = j) log p̂(x = j).

Here, p is the label, which is a one-hot vector.Thus, if the label is
i , this formula reduces to:

� log p̂(x = i) = � log
exp(✓Ti x)Pk
j=1 exp(✓

T
j x)

.

We minimize this–and you’ve seen the movie, it works the same as
the others!

Summary for binary classification/ logistic
regression
• Calculate ℎ! " = $ %""
• Get &((|	+; %) using ℎ! " , that’s likelihood
• Calculate log likelihood from there
• Maximize log likelihood from there –

use SGD to maximize for %
• Start with a guess for !
• Keep updating with the rule until convergence

Discriminative Approach

Predicted
Output

Other Forms of Bayes Rule

)(~)|~()()|(
)()|()|(

APABPAPABP
APABPBAP

+
=

)(
)()|()|(

XBP
XAPXABPXBAP

∧

∧∧
=∧

P(B|A) * P(A)

P(B)
P(A|B) =

Discriminative vs Generative Models

Discriminative Models Generative Models
Directly learn the function
mapping

/: 	%	 → 	#
or, Calculate likelihood

!(#|%)	

Calculate
!(#|%)	

from !(%|#)	 and ! #

But Joint Distribution
! %, # = 	!(%|#)	!(#)

1. Assume some functional
form for !(#|%)

2. Estimate parameters
of !(#|%)	directly from
training data

1. Assume some functional form
for !(#), !(%|#)

2. Estimate parameters of !(%|#), !(#)	directly
from training data

3. Use Bayes rule to calculate !(#	|%)

How many parameters must we estimate?
Suppose X =<X1,… Xn>
where Xi and Y are boolean RV�s

To estimate P(Y| X1, X2, … Xn)

If we have 30 Xi�s instead of 2?

Can we reduce params using Bayes Rule?
Suppose X =<X1,… Xn>
where Xi and Y are boolean RV�s

How many parameters to define P(X1,… Xn | Y)?

How many parameters to define P(Y)?

P(X|Y=1) ----- 2n - 1
P(X|Y=0) ----- 2n - 1

Can we reduce params using Bayes Rule?
Suppose X =<X1,… Xn>
where Xi and Y are boolean RV�s

Bayes rule:

Assuming conditional independence among Xi�s:

So, to pick most probable Y for Xnew = < X1, …, Xn >

Naïve Bayes in a Nutshell

Principles for Estimating Probabilities

Principle 1 (maximum likelihood):
• choose parameters θ that maximize

P(data | θ)

Principle 2 (maximum a posteriori prob.):
• choose parameters θ that maximize

P(θ | data) = P(data | θ) P(θ)
 P(data)

Maximum Likelihood Estimation
P(X=1) = θ P(X=0) = (1-θ)

Data D:

Flips produce data D with heads, tails
•  flips are independent, identically distributed 1’s and 0’s

(Bernoulli)
•  and are counts that sum these outcomes (Binomial)

X=1 X=0

Maximum Likelihood Estimate for Θ

[C. Guestrin]

hint:

Summary:
Maximum Likelihood Estimate

X=1 X=0
P(X=1) = θ

P(X=0) = 1-θ
(Bernoulli)

Beta prior distribution – P(θ)

Beta prior distribution – P(θ)

and MAP estimate is therefore

Maximum likelihood estimates:

Estimating Parameters: Y, Xi discrete-valued

MAP estimates (Beta, Dirichlet priors):
 Only difference:

�imaginary� examples

What if we have continuous Xi ?
Eg., image classification: Xi is ith pixel

Gaussian Naïve Bayes (GNB): assume

Sometimes assume σik
• is independent of Y (i.e., σi),
• or independent of Xi (i.e., σk)
• or both (i.e., σ)

Gaussian Naïve Bayes Algorithm – continuous Xi
(but still discrete Y)

•  Train Naïve Bayes (examples)
 for each value yk

 estimate*
 for each attribute Xi estimate
 class conditional mean , variance

•  Classify (Xnew)

 * probabilities must sum to 1, so need estimate only n-1 parameters...

• Go through the sample midterm questions,
specifically for bias-variance, regularization, kernel,
SVM, and conditional probabilities

• Go through the homework, know how to estimate
parameters in different manners

• Read the lecture notes for bias-variance,
regularization, and kernel (on top of the review
slides).

• Read the SVM slides, not included in this
discussion

Best of Luck!

