CMSC 478 Machine Learning
 KMA Solaiman
 ksolaima@umbc.edu

Midterm Review

Supervised Learning

- A hypothesis or a prediction function is function $h: \mathcal{X} \rightarrow \mathcal{Y}$
$-\mathcal{X}$ is an image, and \mathcal{Y} contains "cat" or "not."
- \mathcal{X} is a text snippet, and \mathcal{Y} contains "hate speech" or "not."
$-\mathcal{X}$ is house data, and \mathcal{Y} could be the price.
- A training set is a set of pairs $\left\{\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(n)}, y^{(n)}\right)\right.$ s.t. $x^{(i)} \in \mathcal{X}$ and $y^{(i)} \in \mathcal{Y}$ for $i=1, \ldots, n$.
- Given a training set our goal is to produce a good prediction function h
- Defining "good" will take us a bit. It's a modeling question!
- We will want to use h on new data not in the training set.
- If \mathcal{Y} is continuous, then called a regression problem.
- If \mathcal{Y} is discrete, then called a classification problem.

How do we represent h ? (One popular choice)

$$
h(x)=\theta_{0}+\theta_{1} x_{1} \text { is an affine function }
$$

Visual version of linear regression

Let $h_{\theta}(x)=\sum_{j=0}^{d} \theta_{j} x_{j}$ want to choose θ so that $h_{\theta}(x) \approx y$. One popular idea called least squares

$$
J(\theta)=\frac{1}{2} \sum_{i=1}^{n}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}
$$

Choose

$$
\theta=\underset{\theta}{\operatorname{argmin}} J(\theta) .
$$

Solving the least squares optimization problem.

Gradient Descent

$$
\begin{aligned}
\theta^{(0)} & =0 \\
\theta_{j}^{(t+1)} & =\theta_{j}^{(t)}-\alpha \frac{\partial}{\partial \theta_{j}} J\left(\theta^{(t)}\right) \quad \text { for } j=0, \ldots, d
\end{aligned}
$$

Gradient Descent Computation

$$
\theta_{j}^{(t+1)}=\theta_{j}^{(t)}-\alpha \frac{\partial}{\partial \theta_{j}} J\left(\theta^{(t)}\right) \text { for } j=0, \ldots, d
$$

Note that α is called the learning rate or step size.

Let's compute the derivatives. . .

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{j}} J\left(\theta^{(t)}\right) & =\sum_{i=1}^{n} \frac{1}{2} \frac{\partial}{\partial \theta_{j}}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2} \\
& =\sum_{i=1}^{n}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) \frac{\partial}{\partial \theta_{j}} h_{\theta}\left(x^{(i)}\right)
\end{aligned}
$$

Gradient Descent Computation

$$
\theta_{j}^{(t+1)}=\theta_{j}^{(t)}-\alpha \frac{\partial}{\partial \theta_{j}} J\left(\theta^{(t)}\right) \text { for } j=0, \ldots, d
$$

Note that α is called the learning rate or step size.

Let's compute the derivatives...

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{j}} J\left(\theta^{(t)}\right) & =\sum_{i=1}^{n} \frac{1}{2} \frac{\partial}{\partial \theta_{j}}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2} \\
& =\sum_{i=1}^{n}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) \frac{\partial}{\partial \theta_{j}} h_{\theta}\left(x^{(i)}\right)
\end{aligned}
$$

For our particular h_{θ} we have:

$$
h_{\theta}(x)=\theta_{0} x_{0}+\theta_{1} x_{1}+\cdots+\theta_{d} x_{d} \text { so } \frac{\partial}{\partial \theta_{j}} h_{\theta}(x)=x_{j}
$$

Gradient Descent Computation

Thus, our update rule for component j can be written:

$$
\theta_{j}^{(t+1)}=\theta_{j}^{(t)}-\alpha \sum_{i=1}^{n}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) x_{j}^{(i)}
$$

Supervised Learning and Classification

- Linear Regression via a Probabilistic Interpretation
- Logistic Regression
- Optimization Method: Newton's Method

We'll learn the maximum likelihood method (a probabilistic interpretation) to generalize from linear regression to more sophisticated models.

Notation for Guassians in our Problem

Recall in our model,

$$
\begin{equation*}
y^{(i)}=\theta^{T} x^{(i)}+\varepsilon^{(i)} \text { in which } \varepsilon^{(i)} \sim \mathcal{N}\left(0, \sigma^{2}\right) \tag{11.1}
\end{equation*}
$$

or more compactly notation:

$$
\begin{equation*}
y^{(i)} \mid x^{(i)} ; \theta \sim \mathcal{N}\left(\theta^{T} x, \sigma^{2}\right) \tag{11.2}
\end{equation*}
$$

equivalently, Probability distribution over $y^{(i)}$, given $x^{(i)}$ and parameterized by θ

$$
\begin{equation*}
P\left(y^{(i)} \mid x^{(i)} ; \theta\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{\left(y^{(i)}-x^{(i)} \theta\right)^{2}}{2 \sigma^{2}}\right\} \tag{11.3}
\end{equation*}
$$

- We condition on $x^{(i)}$.
- In contrast, θ parameterizes or "picks" a distribution. We use bar (|) versus semicolon (;) notation above.

(Log) Likelihoods!

Intuition: among many distributions, pick the one that agrees with the data the most (is most "likely").

$$
\begin{aligned}
L(\theta) & =p(y \mid X ; \theta)=\prod_{i=1}^{n} p\left(y^{(i)} \mid x^{(i)} ; \theta\right) \quad \text { iid assumption } \\
& =\prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{\left(x^{(i)} \theta-y^{(i)}\right)^{2}}{2 \sigma^{2}}\right\}
\end{aligned}
$$

For convenience, we use the Log Likelihood $\ell(\theta)=\log L(\theta)$.

$$
\begin{aligned}
\ell(\theta) & =\sum_{i=1}^{n} \log \frac{1}{\sigma \sqrt{2 \pi}}-\frac{\left(x^{(i)} \theta-y^{(i)}\right)^{2}}{2 \sigma^{2}} \\
& =n \log \frac{1}{\sigma \sqrt{2 \pi}}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x^{(i)} \theta-y^{(i)}\right)^{2}=C(\sigma, n)-\frac{1}{\sigma^{2}} J(\theta)
\end{aligned}
$$

where $C(\sigma, n)=n \log \frac{1}{\sigma \sqrt{2 \pi}}$.

(Log) Likelihoods!

So we've shown that finding a θ to maximize $L(\theta)$ is the same as maximizing

$$
\ell(\theta)=C(\sigma, n)-\frac{1}{\sigma^{2}} J(\theta)
$$

Or minimizing, $J(\theta)$ directly (why?)

Takeaway: "Under the hood," solving least squares is solving a maximum likelihood problem for a particular probabilistic model.

This view shows a path to generalize to new situations!

Graph of Iris Dataset with logistic regression

Logistic Regression: Link Functions
Given a training set $\left\{\left(x^{(i)}, y^{(i)}\right)\right.$ for $\left.i=1, \ldots, n\right\}$ let $y^{(i)} \in\{0,1\}$. Want $h_{\theta}(x) \in[0,1]$. Let's pick a smooth function:

$$
h_{\theta}(x)=g\left(\theta^{T} x\right)
$$

Here, g is a link function. There are many... but we'll pick one!

$$
g(z)=\frac{1}{1+e^{-z}} . \quad \text { SIGMOID }
$$

How do we interpret $h_{\theta}(x)$?

$$
\begin{aligned}
& P(y=1 \mid x ; \theta)=h_{\theta}(x) \\
& P(y=0 \mid x ; \theta)=1-h_{\theta}(x)
\end{aligned}
$$

Logistic Regression: Link Functions
Let's write the Likelihood function. Recall:

$$
\begin{aligned}
& P(y=1 \mid x ; \theta)=h_{\theta}(x) \\
& P(y=0 \mid x ; \theta)=1-h_{\theta}(x)
\end{aligned}
$$

Then,

$$
\begin{aligned}
L(\theta) & =P(y \mid X ; \theta)=\prod_{i=1}^{n} p\left(y^{(i)} \mid x^{(i)} ; \theta\right) \\
& =\prod_{i=1}^{n} h_{\theta}\left(x^{(i)}\right)^{y^{(i)}}\left(1-h_{\theta}\left(x^{(i)}\right)\right)^{1-y^{(i)}} \quad \text { exponents encode "if-then" }
\end{aligned}
$$

Taking logs to compute the log likelihood $\ell(\theta)$ we have:

$$
\ell(\theta)=\log L(\theta)=\sum_{i=1}^{n} y^{(i)} \log h_{\theta}\left(x^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)
$$

Now to solve it. . .

$$
\ell(\theta)=\log L(\theta)=\sum_{i=1}^{n} y^{(i)} \log h_{\theta}\left(x^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)
$$

We maximize for θ but we already saw how to do this! Just compute derivative, run (S)GD and you're done with it!

Takeaway: This is another example of the max likelihood method: we setup the likelihood, take logs, and compute derivatives.

Optimization Method Summary

	Compute per Step	Number of Steps to convergence
Method		$\approx \epsilon^{-2}$
MGD	$\theta(\mathrm{d})$	$\approx \epsilon^{-1}$
Minibatch SGD		$\approx(\mathrm{nd})$
Newton	$\Omega\left(\mathrm{nd}^{2}\right)$	$\approx \log (1 / \epsilon)$

- In classical stats, d is small $(<100), n$ is often small, and exact parameters matter
- In modern ML, d is huge (billions, trillions), n is huge (trillions), and parameters used only for prediction
$>$ These are approximate number of computing steps
> Convergence happens when loss settles to within an error range around the final value.
> Newton would be very fast, where SGD needs a lot of step, but individual steps are fast, makes up for it
- As a result, (minibatch) SGD is the workhorse of ML.

1 vs All

Multiclass

Suppose we want to choose among k discrete values, e.g., \{'Cat', 'Dog', 'Car', 'Bus'\} so $k=4$.

We encode with one-hot vectors i.e. $y \in\{0,1\}^{k}$ and $\sum_{j=1}^{k} y_{j}=1$.

$$
\begin{aligned}
& \left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \quad\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \quad\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \quad\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) \\
& \text { 'Cat' 'Dog' 'Car' 'Bus' }
\end{aligned}
$$

A prediction here is actually a distribution over the k classes. This leads to the SoftMax function described below (derivation in the notes!). That is our hypothesis is a vector of k values:

$$
P(y=j \mid x ; \bar{\theta})=\frac{\exp \left(\theta_{j}^{T} x\right)}{\sum_{i=1}^{k} \exp \left(\theta_{i}^{T} x\right)}
$$

Here each θ_{j} has the same dimension as x, i.e., $x, \theta_{j} \in R^{d+1}$ for $j=1, \ldots, k$.

How do you train multiclass?

Fixing x and θ, our output is a vector $\hat{p} \in \mathbb{R}_{+}^{k}$ s.t. $\sum_{j=1}^{k} \hat{p}_{j}=1$.

$$
\hat{p}_{j}=P(y=j \mid x ; \theta)=\frac{\exp \left(\theta_{j}^{T} x\right)}{\sum_{i=1}^{k} \exp \left(\theta_{i}^{T} x\right)} .
$$

Formally, we maximize the probability of the given class!
We can view as CrossEntropy:

$$
\operatorname{CrossEntropy}(p, \hat{p})=-\sum_{j} p(x=j) \log \hat{p}(x=j) .
$$

Here, p is the label, which is a one-hot vector.Thus, if the label is i, this formula reduces to:

$$
-\log \hat{p}(x=i)=-\log \frac{\exp \left(\theta_{i}^{T} x\right)}{\sum_{j=1}^{k} \exp \left(\theta_{j}^{T} x\right)} .
$$

We minimize this-and you've seen the movie, it works the same as the others!

Summary for binary classification/ logistic regression

- Calculate $h_{\theta}(x)=g\left(\theta^{T} x\right)$
- Get $P(y \mid X ; \theta)$ using $h_{\theta}(x)$, that's likelihood
- Calculate log likelihood from there
- Maximize log likelihood from there use SGD to maximize for θ
- Start with a guess for θ
- Keep updating with the rule until convergence
inference
learn

$\max \log p(y \mid x ; \theta)$ by maximum likelihood.

$$
\theta^{(t+1)}=\theta^{(t)}+\alpha\left(y^{(i)}-h_{\theta^{(t)}}\left(x^{(i)}\right)\right) x^{(i)} .
$$

Other Forms of Bayes Rule $\quad P(A \mid B)=\frac{P(B \mid A) * P(A)}{P(B)}$

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \sim A) P(\sim A)}
$$

$$
P(A \mid B \wedge X)=\frac{P(B \mid A \wedge X) P(A \wedge X)}{P(B \wedge X)}
$$

Discriminative vs Generative Models

Discriminative Models	Generative Models
Directly learn the function mapping $h: X \rightarrow y$ or, Calculate likelihood $P(y \mid X)$	Calculate $P(y \mid X)$ from $P(X \mid y)$ and $P(y)$ But Joint Distribution $P(X, y)=P(X \mid y) P(y)$
1. Assume some functional form for $\boldsymbol{P}(\boldsymbol{y} \mid \boldsymbol{X})$ 2. Estimate parameters of $\boldsymbol{P}(\boldsymbol{y} \mid \boldsymbol{X})$ directly from training data	1. Assume some functional form for $P(y), P(X \mid y)$ 2. Estimate parameters of $\boldsymbol{P}(\boldsymbol{X} \mid \boldsymbol{y}), \boldsymbol{P}(\boldsymbol{y})$ directly from training data 3. Use Bayes rule to calculate $\boldsymbol{P}(\boldsymbol{y} \mid \boldsymbol{X})$

How many parameters must we estimate?
Suppose $X=<X_{1}, \ldots X_{n}>$
where X_{i} and Y are boolean RV's

9
To estimate $\mathrm{P}\left(\mathrm{Y} \mid \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}\right)$

$$
2^{n}
$$

If we have $30 X_{i}^{\prime}$ s instead of 2 ?

$$
2^{30} \sim \mid B_{1} \|_{i o n}
$$

Can we reduce params using Bayes Rule?

$\begin{aligned} & \text { Suppose } \mathrm{X}=\left\langle\mathrm{X}_{1}, \ldots \mathrm{X}_{\mathrm{n}}>\right. \\ & \text { where } \mathrm{X}_{\mathrm{i}} \text { and } \mathrm{Y} \text { are boolean RV's }\end{aligned} \quad P(Y \mid X)=\frac{P(X \mid Y) P(Y)}{P(X)}$

How many parameters to define $P\left(X_{1}, \ldots X_{n} \mid Y\right)$?

$$
\begin{aligned}
& P(X \mid Y=1)----2^{n}-1 \\
& P(X \mid Y=0)---2^{n}-1
\end{aligned}
$$

How many parameters to define $P(Y)$?

Can we reduce params using Bayes Rule?

$$
\begin{aligned}
& \begin{array}{l}
\text { Suppose } \mathrm{X}=<\mathrm{X}_{1}, \ldots \mathrm{X}_{\mathrm{n}}> \\
\text { where } \mathrm{X}_{\mathrm{i}} \text { and } \mathrm{Y} \text { are boolean RV's }
\end{array} \quad P(Y \mid X)=\frac{P(X \mid Y) P(Y)}{P(X)}
\end{aligned}
$$

how many params for $P\left(x_{1} \cdot x_{n} \mid y\right)\left(2^{n}-1\right) \cdot 2$
how many for $P(Y)=1$

Naïve Bayes in a Nutshell

Bayes rule:

$$
P\left(Y=y_{k} \mid X_{1} \ldots X_{n}\right)=\frac{P\left(Y=y_{k}\right) P\left(X_{1} \ldots X_{n} \mid Y=y_{k}\right)}{\sum_{j} P\left(Y=y_{j}\right) P\left(X_{1} \ldots X_{n} \mid Y=y_{j}\right)}
$$

Assuming conditional independence among $\mathrm{X}_{\mathrm{i}}{ }^{\prime} \mathrm{s}$:

$$
P\left(Y=y_{k} \mid X_{1} \ldots X_{n}\right)=\frac{P\left(Y=y_{k}\right) \prod_{i} P\left(X_{i} \mid Y=y_{k}\right)}{\sum_{j} P\left(Y=y_{j}\right) \prod_{i} P\left(X_{i} \mid Y=y_{j}\right)}
$$

So, to pick most probable Y for $X^{\text {new }}=\left\langle X_{1}, \ldots, X_{n}\right\rangle$

$$
Y^{n e w} \leftarrow \arg \max _{y_{k}} P\left(Y=y_{k}\right) \prod_{i} P\left(X_{i}^{n e w} \mid Y=y_{k}\right)
$$

Principles for Estimating Probabilities

Principle 1 (maximum likelihood):

- choose parameters θ that maximize $P($ data $\mid \theta)$

Principle 2 (maximum a posteriori prob.):

- choose parameters θ that maximize
$P(\theta \mid$ data $)=\frac{P(\text { data } \mid \theta) P(\theta)}{P(\text { data })}$

Maximum Likelihood Estimation

$P(X=1)=\theta \quad P(X=0)=(1-\theta)$

Data $\left.D:=\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right\}$
$P(D \mid \theta)=\theta \cdot(1-\theta) \cdot(1-\theta) \cdot \theta \cdot \theta=\theta^{\alpha_{1}}(1-\theta)^{\alpha_{0}}$

Flips produce data D with α_{1} heads, α_{0} tails

- flips are independent, identically distributed 1's and 0's (Bernoulli)
- α_{1} and α_{0} are counts that sum these outcomes (Binomial)

$$
P(D \mid \theta)=P\left(\alpha_{1}, \alpha_{0} \mid \theta\right)=\theta^{\alpha_{1}}(1-\theta)^{\alpha_{0}}
$$

Maximum Likelihood Estimate for Θ

$$
\begin{aligned}
\hat{\theta} & =\arg \max _{\theta} \ln P(\mathcal{D} \mid \theta) \\
& =\arg \max _{\theta} \ln \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
\end{aligned}
$$

- Set derivative to zero:

$$
\frac{d}{d \theta} \ln P(\mathcal{D} \mid \theta)=0
$$

[C. Guestrin]

$$
\begin{aligned}
& \hat{\theta}=\arg \max _{\theta} \ln P(D \mid \theta) \\
& \text { - Set derivative to zero: } \quad \underset{\frac{d}{d \theta} \ln P(\mathcal{D} \mid \theta)=0}{ } \\
& =\arg \max _{\theta} \underbrace{\ln \left[\theta^{\alpha}\right)}(1-\theta)^{\alpha_{0}}] \\
& \frac{\partial}{\partial \theta} \alpha_{1} \ln \theta+\alpha_{0} \ln (1-\theta) \\
& \text { hint: } \frac{\partial \ln \theta}{\partial \theta}=\frac{1}{\theta} \\
& \alpha_{1} \frac{1}{\theta}+\alpha_{0} \frac{\partial \ln (1-\theta)}{\partial \theta} \\
& \left.0=\alpha_{1} \frac{1}{\theta}-\frac{\alpha_{0}}{1-\theta}\right] \underbrace{\frac{\partial \ln (1-\theta)}{\partial(1-\theta)}}_{\frac{1}{1-\theta}} \cdot \underbrace{\frac{\partial(1-\theta)}{\partial \theta}}_{-1} \\
& \theta=\frac{\alpha_{1}}{\alpha_{1}+\alpha_{0}}
\end{aligned}
$$

Summary:
 Maximum Likelihood Estimate

- Each flip yields boolean value for X

$$
X \sim \text { Bernoulli: } P(X)=\theta^{X}(1-\theta)^{(1-X)}
$$

- Data set D of independent, identically distributed (iid) flips produces α_{1} ones, α_{0} zeros (Binomial)

$$
\begin{aligned}
& P(D \mid \theta)=P\left(\alpha_{1}, \alpha_{0} \mid \theta\right)=\theta^{\alpha_{1}}(1-\theta)^{\alpha_{0}} \\
& \hat{\theta}^{M L E}=\operatorname{argmax}_{\theta} P(D \mid \theta)=\frac{\alpha_{1}}{\alpha_{1}+\alpha_{0}}
\end{aligned}
$$

Beta prior distribution - $P(\theta)$

$$
P(\theta)=\frac{\theta^{\beta_{H}-1}(1-\theta)^{\beta_{T}-1}}{B\left(\beta_{H}, \beta_{T}\right)} \sim \operatorname{Beta}\left(\beta_{H}, \beta_{T}\right)
$$

■ Likelihood function: $\quad P(\mathcal{D} \mid \theta)=\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}$

- Posterior: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$

Beta prior distribution $-P(\theta)$

$P(\theta)=\frac{\theta^{\beta_{H}-1}(1-\theta)}{B\left(\beta_{H}, \beta_{T}\right)} \sim \operatorname{Beta}\left(\beta_{H}, \beta_{T}\right)$

- Likelihood function: $\quad P(\mathcal{D} \mid \theta)=\theta \theta_{\mathbb{C H}}(1-\theta)^{\alpha_{T}}$
- Posterior: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$

$$
\alpha \theta^{\alpha_{L+}+\beta_{H}-1}(1-\theta)^{\alpha_{T}+\beta_{T}-1}
$$

$$
\hat{\theta}^{\text {MAP }}=\frac{\left(\alpha_{H}+\beta_{H}-1\right)}{\left(\alpha_{H}+\beta_{T}-1\right)+\left(\alpha_{T}+\beta_{T}-1\right)}
$$

Eg. 2 Dice roll problem (6 outcomes instead of 2) Likelihood is $\sim \operatorname{Multinomial}\left(\theta=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{k}\right\}\right)$

$$
P(\mathcal{D} \mid \theta)=\theta_{1}^{\alpha_{1}} \theta_{2}^{\alpha_{2}} \ldots \theta_{k}^{\alpha_{k}}
$$

If prior is Dirichlet distribution,

$$
P(\theta)=\frac{\theta_{1}^{\beta_{1}-1} \theta_{2}^{\beta_{2}-1} \ldots \theta_{k}^{\beta_{k}-1}}{B\left(\beta_{1}, \ldots, \beta_{k}\right)} \sim \operatorname{Dirichlet}\left(\beta_{1}, \ldots, \beta_{k}\right)
$$

Then posterior is Dirichlet distribution

$$
P(\theta \mid D) \sim \operatorname{Dirichlet}\left(\beta_{1}+\alpha_{1}, \ldots, \beta_{k}+\alpha_{k}\right)
$$

and MAP estimate is therefore

$$
\hat{\theta}_{i}^{M A P}=\frac{\alpha_{i}+\beta_{i}-1}{\sum_{j=1}^{k}\left(\alpha_{j}+\beta_{j}-1\right)}
$$

Estimating Parameters: Y, X_{i} discrete-valued

Maximum likelihood estimates:

$$
\begin{aligned}
& \hat{\pi}_{k}=\hat{P}\left(Y=y_{k}\right)=\frac{\# D\left\{Y=y_{k}\right\}}{|D|} \\
& \hat{\theta}_{i j k}=\hat{P}\left(X_{i}=x_{j} \mid Y=y_{k}\right)=\frac{\# D\left\{X_{i}=x_{j} \wedge Y=y_{k}\right\}}{\# D\left\{Y=y_{k}\right\}}
\end{aligned}
$$

MAP estimates (Beta, Dirichlet priors):

$$
\begin{aligned}
& \hat{\pi}_{k}=\hat{P}\left(Y=y_{k}\right)=\frac{\# D\left\{Y=y_{k}\right\}+\left(\beta_{k}-1\right)}{|D|+\sum_{m}\left(\beta_{m}-1\right)} \text { "imaginary" examples } \\
& \hat{\theta}_{i j k}=\hat{P}\left(X_{i}=x_{j} \mid Y=y_{k}\right)=\frac{\# D\left\{X_{i}=x_{j} \wedge Y=y_{k}\right\} \mid+\left(\beta_{k}-1\right)}{\# D\left\{Y=y_{k}\right\}+\sum_{m}\left(\beta_{m}-1\right)}
\end{aligned}
$$

What if we have continuous X_{i} ?

Eg., image classification: X_{i} is ith pixel
Gaussian Naïve Bayes (GNB): assume

$$
P\left(X_{i}=x \mid Y=y_{k}\right)=\frac{1}{\sigma_{i k} \sqrt{2 \pi}} e^{\frac{-\left(x-\mu_{i k}\right)^{2}}{2 \sigma_{i k}^{2}}}
$$

Sometimes assume $\sigma_{i k}$

- is independent of Y (i.e., σ_{i}),
- or independent of X_{i} (i.e., σ_{k})
- or both (i.e., σ)

Gaussian Naïve Bayes Algorithm - continuous X_{i}

 (but still discrete Y)- Train Naïve Bayes (examples) for each value y_{k}

$$
\text { estimate }^{*} \pi_{k} \equiv P\left(Y=y_{k}\right)
$$

for each attribute X_{i} estimate
class conditional mean $\mu_{i k}$, variance $\sigma_{i k}$

- Classify ($X^{n e w}$)

$$
\begin{aligned}
& Y^{\text {new }} \leftarrow \arg \max _{y_{k}} P\left(Y=y_{k}\right) \prod_{i} P\left(X_{i}^{\text {new }} \mid Y=y_{k}\right) \\
& Y^{\text {new }} \leftarrow \arg \max _{y_{k}} \quad \pi_{k} \prod_{i} \operatorname{Normal}\left(X_{i}^{\text {new }}, \mu_{i k}, \sigma_{i k}\right)
\end{aligned}
$$

* probabilities must sum to 1 , so need estimate only $\mathrm{n}-1$ parameters...
- Go through the sample midterm questions, specifically for bias-variance, regularization, kernel, SVM, and conditional probabilities
- Go through the homework, know how to estimate parameters in different manners
- Read the lecture notes for bias-variance, regularization, and kernel (on top of the review slides).
- Read the SVM slides, not included in this discussion

Best of Luck!

