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Topics for Today

I We’ll discuss Principal Component Analysis (PCA).

I We’ll discuss Independent Component Analysis (ICA). The
cocktail party problem.

I These are less related than their names might suggests!



Outline

Linear Algebra/Math Review

Two Methods of Dimensionality Reduction
Linear Discriminant Analysis (LDA, LDiscA)
Principal Component Analysis (PCA)



Covariance

covariance: how (linearly) correlated are variables

Value of 
variable j
in object k

Mean of
variable j

Value of 
variable i
in object k

Mean of
variable i

covariance of
variables i and j

𝜎𝜎𝑖𝑖𝑗𝑗 =
1

𝑁𝑁 − 1
�
𝑘𝑘=1

𝑁𝑁

(𝑥𝑥𝑘𝑘𝑖𝑖 − 𝜇𝜇𝑖𝑖)(𝑥𝑥𝑘𝑘𝑗𝑗 − 𝜇𝜇𝑗𝑗)



Covariance

covariance: how (linearly) correlated are variables

Value of 
variable j
in object k

Mean of
variable j

Value of 
variable i
in object k

Mean of
variable i

covariance of
variables i and j

𝜎𝜎𝑖𝑖𝑗𝑗 =
1

𝑁𝑁 − 1
�
𝑘𝑘=1

𝑁𝑁

(𝑥𝑥𝑘𝑘𝑖𝑖 − 𝜇𝜇𝑖𝑖)(𝑥𝑥𝑘𝑘𝑗𝑗 − 𝜇𝜇𝑗𝑗)

𝜎𝜎𝑖𝑖𝑗𝑗 = 𝜎𝜎𝑗𝑗𝑖𝑖 Σ =
𝜎𝜎11 ⋯ 𝜎𝜎1𝐾𝐾
⋮ ⋱ ⋮
𝜎𝜎𝐾𝐾1 ⋯ 𝜎𝜎𝐾𝐾𝐾𝐾



Eigenvalues and Eigenvectors
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for a given matrix operation (multiplication):

what non-zero vector(s) change linearly? 
(by a single multiplication) 
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Dimensionality Reduction

Original (lightly preprocessed 
data)

Compressed 
representation
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Dimensionality Reduction

clarity of representation vs. ease of understanding

oversimplification: loss of important or relevant 
information

Courtesy Antano Žilinsko



Why “maximize” the variance?

How can we efficiently summarize? We 
maximize the variance within our summarization

We don’t increase the variance in the dataset

How can we capture the most information with 
the fewest number of axes?



Summarizing Redundant Information
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vectors aren’t orthogonal)



Our Tour Through Unsupervised Land

Structure Probabilistic Not Probabilistic

“Cluster” GMM k-Means
“Subspace” Factor Analysis PCA

We can impose other structures. These are popular.



PCA Example: MPG

Given pairs (Highway MPG, City MPG) of some cars.

Question: What is “good” MPG?



Center the data

We center the data, i.e., as preprocessing.

x (i) 7→ x (i) − µ where µ =
1

n

n∑
i=1

x (i).



Finding Components

By convention, ‖u1‖ = ‖u2‖ = 1 by convention.

I u1 is the first principal component “how good is the MPG”

I u2 is the second, and roughly the difference.

Recall: any point can be written in an orthogonal basis:

x = α1u1 + α2u2



Goals

I How do we find these directions?

I Some caveats about how to use these?

I Reduce dimensions: Think about D = 1000 reduced to
d = 10.



Preprocessing

Given x (1), . . . , x (n) ∈ Rd we preprocess:

I Center the data x (i) 7→ x (i) − µ
I Recale the data May need to rescale components, e.g.,

“Feet per gallon” v. “Miles per Gallon”

x (i) 7→ x (i) − µ
σ

.

We will assume from now on that the data is preprocessed.



PCA As Optimization

How do you find the closest point to the line?

α1 = argmin
α
‖x − αu1‖2

= argmin
α
‖x‖2 + α2‖u1‖2 − 2αuT1 x

Then, differentiate wrt α, set to 0, and use ‖u1‖2, which leads to:

2α− 2uT1 x = 0 =⇒ α = uTi x .



Generalize to higher dimensions

Suppose we have a u1, . . . , uk ∈ Rd with ui · uj = δi ,j . Then,

= argmin
α1,...,αk∈R

‖x −
k∑

i=1

αiui‖2

= argmin
α1,...,αk∈R

‖x‖2 +
k∑

i=1

α2
i − 2αi (ui · x)

These are k independent minimizations, so αi = ui · x .

I This process is also known as projecting on to the set
spanned by the vectors {u1, . . . , uk}.

I We call ‖x −
∑k

i=1 αiui‖2 the residual.



Finding PCA

There are two ways you can find PCA:

I Maximize the projected subspace of the data. (we see more)

max
u∈Rd

1

n

n∑
i=1

(u · x (i))2.

I Minimize the residual 

min
u∈Rd

1

n

n∑
i=1

(x (i) − u · x (i))2.

We need to recall some more linear algebra to solve this.



Recall: Eigenvalue decomposition

Let A ∈ Rd×d be symmetric (and square) then there exists
U,Λ ∈ Rd×d such that

A = UΛUT in which UUT = I and Λ is diagonal.

I If U = [u1, . . . , ud ], UUT = I can also be written ui · uj = δi ,j .

I In this decomposition,

Λi ,i = λi is called an eigenvalue.

and by convention, we order them λ1 ≥ λ2 ≥ · · · ≥ λd .

I For i = 1, . . . , d , ui is the eigenvector associated with λi :

Aui = λui since Aui = UΛUTui = λiUei = λui

here ei is the ith standard basis vector.



Recall: Eigenvalue decompositions

Given x ∈ Rd and A = UΛUT we can express x in the basis:

x =
d∑

j=1

αjuj

As before, using ui · uj = δi ,j , we compute xTAx

= xTUΛ
d∑

j=1

αjej = xTU
d∑

j=1

λjαjej = xT

 d∑
j=1

λjαjuj

 =
d∑

j=1

λjα
2
j

Since ‖x‖2 = xT x =
∑d

j=1 α
2
j = ‖α‖2, we can write:

max
x :‖x‖2=1

xTAx is equivalent to max
α:‖α‖2=1

d∑
j=1

α2
j λj .



Eigenvectors

So which x attains a maximum?

max
x :‖x‖2=1

xTAx is equivalent to max
α:‖α‖2=1

d∑
j=1

α2
j λj .

I Taking x = u1 works, why?
I What if λ1 = λ2, is it unique?

I Potential instability, when λ1 is close to λ2 issues can happen!



Back to PCA!

max
u∈Rd :‖u‖2=1

1

n

n∑
i=1

(u · x (i))2

We can write:

1

n

n∑
i=1

(u·x (i))2 =
1

n

n∑
i=1

uT x (i)(x (i))Tu = uT

1

n

n∑
i=1

x (i)(x (i))T︸ ︷︷ ︸
C

 u.

C is the covariance of the data, since we subtracted the mean.

The first eigenvector of the data’s covariance matrix is the
principal component



More PCA
I Multiple Dimensions What if we want multiple dimensions?

We keep the top-k .

max
U∈Rk×d :UUT=Ik

1

n

n∑
u=1

‖Ux (i)‖2.

I Reduce dimensionality. How do we represent data with just
those k < d scalars αj for j = 1, . . . , k

x = α1u1 + α2u2 + · · ·+ αdud keep only (α1, . . . , αk)

I Lurking instability: what if λj = λj+1?

I Choose k? One approach is “amount of explained variance”∑k
j=1 λj∑n
i=1 λi

≥ 0.9 note tr(C ) =
n∑

i=1

Ci ,i =
n∑

i=1

λi

Recall λj ≥ 0 since C is a covariance matrix.
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Recap of PCA

I Project the data onto a subspace: Find the subspace that
captures as much of the data as possible (or doesn’t explain
the least amount).

I Dimensionality reduction and visualization

I Note: The preprocessing (especially centering) featured in our
interpretation.



Independent Component Analysis



ICA: Independent Component Analysis

I The high-level story (the cocktail party problem)

I The key technical issues (on distributions) and likelihoods

I Model



Cocktail Party Problem



The Data

S
(t)
j is the intensity at time t from speaker j .

We do not observe S (t) directly, only x (t) the microphones.

Our model is.
x
(t)
j = aj ,1S

(t)
1 + aj ,2S

(t)
2 .

“Microphone j at time t
(
x
(t)
j

)
receives a mixture of speaker 1 at

time t
(
S
(t)
1

)
and speaker 2 at time t

(
S
(t)
2

)
.”



Our Model

We can write out model succinctly as:

x (t) = As(t) for t = 1, . . . , n

I The blue values are observed: x (t).

I The red values are latent: A and s(t).

I Given x , our goal is to estimate s and A.

For simplicity, we assume number of speakers equals the number of
microphones.



More formal model

I Given: x (1), . . . , x (n) ∈ Rd where d is the number of speakers
and microphones.

I Do: Find s(1), . . . , s(n) ∈ Rd and A ∈ Rd×d

x (t) = As(t).

We call A the mixing matrix and W = A−1 is the unmixing
matrix.

We write

W =


wT
1

wT
2
...

wT
d

 so that S
(t)
j = wj · x (t).
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More formal model
I Given: x (1), . . . , x (n) ∈ Rd where d is the number of speakers

and microphones.

I Do: Find s(1), . . . , s(n) ∈ Rd and A ∈ Rd×d

x (t) = As(t).

Some caveats:

I We assume A does not vary with time and is full rank.

I There are inherent ambiguities:
I We can’t determine speaker id (could swap 1 and 2!)
I We can’t determine absolute intensity:

(cA)(c−1s(t)) = As(t) for any c 6= 0.

I Speakers cannot be Gaussian! Maybe surprising:

x (t) ∼ N (µ,AAT ) then if UTU = I then AU generates same data.

Nevertheless, we can recover something meaningful–and the whole
algorithm is just MLE with gradient descent.We need one fact first.
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Detour: Density under linear transformations

Consider
s ∼ Uniform[0, 1] and u = 2s.

What is the PDF of u? Tempted to write Pu(x/2) = Ps(x) – but
this is incorrect:

Ps(x) =

{
1 if x ∈ [0, 1]

0 otherwise
and Pu(x) =

1

2
ps
(x

2

)
.

The key issue is the normalization constant here 1
2 .

For matrix A:

Pu(x) = ps(A−1x)
∣∣det(A−1)

∣∣ = Ps(Wx) |det(W )| .

Here, det(A−1) = 1
det(A)
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Now the ICA Model is MLE
Goal: write signals in terms of observed quantities:

p(s) =
d∏

j=1

ps(sj) sources are iid.

p(x) =
d∏

j=1

ps(wj · x) |det(W )| Use the previous slide

Technical: Use non-rotationally invariant distribution. We set

ps(x) ∝ g ′(x) for g(x) =
1

1 + e−x
.

With this, we can solve the following with gradient descent:

`(W ) =
n∑

t=1

d∑
j=1

log g ′
(
wj · x (t)

)
+ log |det(W )| .
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Summary of Lecture

I We saw PCA: workhorse of dimensionality reduction. The
structure was “subspaces”

I We saw ICA: Key idea for homework, and introduced this
concept of up to symmetry.


