CMSC 478 Unsupervised Learning K-means Clustering

KMA Solaiman

ksolaima@umbc.edu

Unsupervised learning is "harder" than supervised, so we'll make *stronger* assumptions and accept *weaker guarantees*.

project where you need to predict the sales of a big mart:

Outlet_Size	Outlet_Location_Type	Outlet_Type	Item_Outlet_Sales	
Medium	Tier 1	Supermarket Type1	3735.1380	
Medium	Tier 3	Supermarket Type2	443.4228	
Medium	Tier 1	Supermarket Type1	2097.2700	
NaN	Tier 3	Grocery Store	732.3800	
High	Tier 3	Supermarket Type1	994.7052	

your task is to predict whether a loan will be approved or not:

	Loan_ID	Gender	Married	ApplicantIncome	LoanAmount	Loan_Status
L	P001002	Male	No	5849	130.0	Y
L	P001003	Male	Yes	4583	128.0	N
LF	P001005	Male	Yes	3000	66.0	Y
L	P001006	Male	Yes	2583	120.0	Y
L	P001008	Male	No	6000	141.0	Y

k-Means (Picture)

Given k = 2 and the following data find clusters.

- **Given** an integer k (the number of clusters) and $x^{(1)}, \ldots, x^{(n)} \in \mathbb{R}^d$.
- **Do** find an assignment of $x^{(i)}$ to one of the k clusters.

 $C^{(i)} = j$ means point *i* in cluster *j*

e.g.,
$$C^{(2)} = 2$$
 and $C^{(4)} = 1$

▲□▶▲□▶▲≡▶▲≡▶ ● ● ●

• (Randomly) Initialize Centers $\mu^{(1)}$ and $\mu^{(2)}$.

• (Randomly) Initialize Centers $\mu^{(1)}$ and $\mu^{(2)}$.

Assign each point, $x^{(i)}$, to closest cluster

$$C^{(i)} = \underset{j=1,...,k}{\operatorname{argmin}} \|\mu^{(j)} - x^{(i)}\|^2 \text{ for } i = 1,...,n$$

▶ (Randomly) Initialize Centers µ⁽¹⁾ and µ⁽²⁾.
▶ Assign each point, x⁽ⁱ⁾, to closest cluster
C⁽ⁱ⁾ = argmin_{j=1,...,k} ||µ^(j) − x⁽ⁱ⁾||² for i = 1,..., n

Compute new center of each cluster:

$$\mu^{(j)} = rac{1}{|\Omega_j|} \sum_{i \in \Omega_j} x^{(i)}$$
 where $\Omega_j = \{i : C^{(i)} = j\}$

• (Randomly) Initialize Centers $\mu^{(1)}$ and $\mu^{(2)}$.

Assign each point, $x^{(i)}$, to closest cluster

$$C^{(i)} = \operatorname*{argmin}_{j=1,...,k} \|\mu^{(j)} - x^{(i)}\|^2$$
 for $i = 1, ..., n$

Compute new center of each cluster:

$$\mu^{(j)} = rac{1}{|\Omega_j|} \sum_{i \in \Omega_j} x^{(i)}$$
 where $\Omega_j = \{i : C^{(i)} = j\}$

Repeat until clusters stay the same!

Comments about *k*-means

Does it terminate? Yes, see notes! It minimizes

$$J(C, \mu) = \sum_{i=1}^{n} \|x^{(i)} - \mu^{C^{(i)}}\|^2$$
 decreases commonotonically.

- Does it find a global minimum? No, it's an NP-Hard problem!
- Side Note: k-means ++ from great Stanford folks¹
 - Improved Approximation Ratio and default in SKLearn!
- How do you choose k? It's a modeling question!

Different number of clusters

Different Densities

Choosing K?

- # of clusters
- Cluster centers
 - K-means++
- Sensitivity to outliers
 - identify and handle outliers before applying k-means clustering
 - removing them, transforming them, or using a robust variant of k-means clustering that is less sensitive to the presence of outliers

K-means++

- Compute Density Estimation
- Assign centroids based on that

K-means++

- Compute Density Estimation
- Assign centroids based on that

K-means++

- Compute Density Estimation
- Assign centroids based on that
- 3 clusters

Random Pick

Calculate D(x)

١

Largest D(x)²

١

Largest D(x)²

- Steps to Initialize the Centroids Using K-Means++
- 1. The first cluster is chosen uniformly at random from the data points we want to cluster. This is similar to what we do in K-Means, but instead of randomly picking all the centroids, we just pick one centroid here
- 2.Next, we compute the distance (D(x)) of each data point (x) from the cluster center that has already been chosen
- 3.Then, choose the new cluster center from the data points with the probability of x being proportional to $(D(x))^2$
- 4.We then repeat steps 2 and 3 until k clusters have been chosen

How to Choose the Right Number of Clusters?

How to Choose the Right Number of Clusters?

Debt

Evaluation Metrics

• Inertia

- sum of distances of all the points within a cluster from the centroid of that cluster.
- lesser the inertia value, the better our clusters are.
- Silhouette Score
 - high silhouette score = clusters are well separated
 - 0 = overlapping clusters,
 - negative score suggests poor clustering solutions.
 - For each data,

 $s = (b - a) / \max(a, b)$

- 'a' is the average distance within the cluster, 'b' is the average distance to the nearest cluster, and 'max(a, b)' is the maximum of 'a' and 'b'
- Mean for all points

Intra cluster distance

• Dunn index

Clusters are compact

Empirical Choice of K

Empirical Choice of K

