CMSC 478

Unsupervised Learning

 K-means ClusteringKMA Solaiman

ksolaima@umbc.edu

Unsupervised Learning In Pictures

Unsupervised learning is "harder" than supervised, so we'll make stronger assumptions and accept weaker guarantees.
project where you need to predict the sales of a big mart:

| Outlet_Size | Outlet_Location_Type | Outlet_Type | Item_Outlet_Sales |
| ---: | ---: | ---: | ---: | ---: |
| Medium | Tier 1 | Supermarket
 Type1 | 3735.1380 |
| Medium | Tier 3 | Supermarket
 Type2 | 443.4228 |
| NaN | Tier 1 | Supermarket
 Type1 | 2097.2700 |
| High | Tier 3 | Grocery
 Store | 732.3800 |

your task is to predict whether a loan will be approved or not:

Loan_ID	Gender	Married	ApplicantIncome	LoanAmount	Loan_Status
LP001002	Male	No	5849	130.0	Y
LP001003	Male	Yes	4583	128.0	N
LP001005	Male	Yes	3000	66.0	Y
LP001006	Male	Yes	2583	120.0	Y
LP001008	Male	No	6000	141.0	Y

k-Means (Picture)

Given $k=2$ and the following data find clusters.

- Given an integer k (the number of clusters) and $x^{(1)}, \ldots, x^{(n)} \in \mathbb{R}^{d}$.
- Do find an assignment of $x^{(i)}$ to one of the k clusters.

$$
C^{(i)}=j \text { means point } i \text { in cluster } j
$$

e.g., $C^{(2)}=2$ and $C^{(4)}=1$

How do we find these clusters? (Iterative Approach)

- (Randomly) Initialize Centers $\mu^{(1)}$ and $\mu^{(2)}$.

How do we find these clusters? (Iterative Approach)

- (Randomly) Initialize Centers $\mu^{(1)}$ and $\mu^{(2)}$.
- Assign each point, $x^{(i)}$, to closest cluster

$$
C^{(i)}=\underset{j=1, \ldots, k}{\operatorname{argmin}}\left\|\mu^{(j)}-x^{(i)}\right\|^{2} \text { for } i=1, \ldots, n
$$

How do we find these clusters? (Iterative Approach)

- (Randomly) Initialize Centers $\mu^{(1)}$ and $\mu^{(2)}$.
- Assign each point, $x^{(i)}$, to closest cluster

$$
C^{(i)}=\underset{j=1, \ldots, k}{\operatorname{argmin}}\left\|\mu^{(j)}-x^{(i)}\right\|^{2} \text { for } i=1, \ldots, n
$$

- Compute new center of each cluster:

$$
\mu^{(j)}=\frac{1}{\left|\Omega_{j}\right|} \sum_{i \in \Omega_{j}} x^{(i)} \text { where } \Omega_{j}=\left\{i: C^{(i)}=j\right\}
$$

How do we find these clusters? (Iterative Approach)

- (Randomly) Initialize Centers $\mu^{(1)}$ and $\mu^{(2)}$.
- Assign each point, $x^{(i)}$, to closest cluster

$$
C^{(i)}=\underset{j=1, \ldots, k}{\operatorname{argmin}}\left\|\mu^{(j)}-x^{(i)}\right\|^{2} \text { for } i=1, \ldots, n
$$

- Compute new center of each cluster:

$$
\mu^{(j)}=\frac{1}{\left|\Omega_{j}\right|} \sum_{i \in \Omega_{j}} x^{(i)} \text { where } \Omega_{j}=\left\{i: C^{(i)}=j\right\}
$$

Repeat until clusters stay the same!

Comments about k-means

- Does it terminate? Yes, see notes! It minimizes

$$
J(C, \mu)=\sum_{i=1}^{n}\left\|x^{(i)}-\mu^{C^{(i)}}\right\|^{2} \text { decreases monotonically. }
$$

- Does it find a global minimum? No, it's an NP-Hard problem!
- Side Note: k-means ++ from great Stanford folks ${ }^{1}$
- Improved Approximation Ratio and default in SKLearn!
- How do you choose k ? It's a modeling question!

Different number of clusters

Different Densities

Original Points

K-means ($k=3$)

Choosing K?

- \# of clusters
- Cluster centers
- K-means++
- Sensitivity to outliers
- identify and handle outliers before applying k-means clustering
- removing them, transforming them, or using a robust variant of k-means clustering that is less sensitive to the presence of outliers

K-means++

- Compute Density Estimation
- Assign centroids based on that

K-means++

- Compute Density Estimation
- Assign centroids based on that

K-means++

- Compute Density Estimation
- Assign centroids based on that
- 3 clusters

Largest $D(x)^{2}$

$\bullet-$

Largest $D(x)^{2}$

Largest $D(x)^{2}$

Largest $D(x)^{2}$
from both center

- Steps to Initialize the Centroids Using K-Means++
1.The first cluster is chosen uniformly at random from the data points we want to cluster. This is similar to what we do in K-Means, but instead of randomly picking all the centroids, we just pick one centroid here
2.Next, we compute the distance $(D(x))$ of each data point (x) from the cluster center that has already been chosen
3.Then, choose the new cluster center from the data points with the probability of x being proportional to (D(x)) ${ }^{2}$
4.We then repeat steps 2 and 3 until k clusters have been chosen

How to Choose the Right Number of

 Clusters?

How to Choose the Right Number of Clusters?

Evaluation Metrics

- Inertia
- sum of distances of all the points within a cluster from the centroid of that cluster.
- lesser the inertia value, the better our clusters are.
- Silhouette Score
- high silhouette score = clusters are well separated
- 0 = overlapping clusters,

Intra cluster distance

- negative score suggests poor clustering solutions.
- For each data,

$$
s=(b-a) / \max (a, b)
$$

- 'a' is the average distance within the cluster, ' b ' is the average distance to the nearest cluster, and 'max (a, b) ' is the maximum of ' a ' and ' b '
- Mean for all points

- Dunn index

Empirical Choice of K

Empirical Choice of K

