CMSC 478
 Machine Learning

KMA Solaiman
 ksolaima@umbc.edu

(originally prepared by Tommi Jaakkola, MIT CSAIL)

Linear classifiers (with offset)

- A linear classifier with parameters $\left(\underline{\theta}, \theta_{0}\right)$

$$
\begin{aligned}
& f\left(\underline{x} ; \underline{\theta}, \theta_{0}\right)=\operatorname{sign}\left(\underline{\theta} \cdot \underline{x}+\theta_{0}\right) \\
&= \begin{cases}+1, & \text { if } \underline{\theta} \cdot \underline{x}+\theta_{0}>0 \\
-1, & \text { if } \underline{\theta} \cdot \underline{x}+\theta_{0} \leq 0\end{cases} \\
& \underline{\theta} \cdot \underline{x}+\theta_{0}=0
\end{aligned}
$$

Support vector machine

- We get a max-margin decision boundary by solving a quadratic programming problem
- The solution is unique and sparse (support vectors)

Support vector machine

- Relaxed quadratic optimization problem minimize $\frac{1}{2}\|\underline{\theta}\|^{2}+C \sum_{i=1}^{n} \xi_{i} \quad$ subject to

$$
y_{i}\left(\underline{\theta} \cdot \underline{x}_{i}+\theta_{0}\right) \geq 1-\xi_{i}, \quad i=1, \ldots, n
$$

$$
\xi_{i} \geq 0, \quad i=1, \ldots, n
$$

The value of C is an additional parameter we have to set

Beyond linear classifiers...

- Many problems are not solved well by a linear classifier even if we allow misclassified examples (SVM with slack)
- E.g., data from experiments typically involve "clusters" of different types of examples

Non-linear feature mappings

- The easiest way to make the classifier more powerful is to add non-linear coordinates to the feature vectors
- The classifier is still linear in the parameters, not inputs

$$
\begin{aligned}
& \underline{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \rightarrow \quad \phi(\underline{x})=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{1}^{2} \\
\sqrt{2} x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right] \\
&\left.\theta_{0}\right)=\operatorname{sign}\left(\underline{\theta} \cdot \underline{x}+\theta_{0}\right)
\end{aligned}
$$

linear classifier

$$
f\left(\underline{x} ; \underline{\theta}, \theta_{0}\right)=\operatorname{sign}\left(\underline{\theta} \cdot \phi(\underline{x})+\theta_{0}\right)
$$

non-linear classifier

Non-linear feature mappings

- The easiest way to make the classifier more powerful is to add non-linear coordinates to the feature vectors
- The classifier is still linear in the parameters, not inputs

$$
\begin{aligned}
& \underline{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \rightarrow \quad \phi(\underline{x})=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{1}^{2} \\
\sqrt{2} x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right] \\
& \left.0_{0}\right)=\operatorname{sign}\left(\underline{\theta} \cdot \underline{x}+\theta_{0}\right)
\end{aligned}
$$

$$
\begin{array}{cc}
\text { linear classifier } & f\left(\underline{x} ; \underline{\theta}, \theta_{0}\right)=\operatorname{sign}\left(\underline{\theta} \cdot \underline{\phi}(\underline{x})+\theta_{0}\right) \\
\underline{\theta} \cdot \underline{x}+\theta_{0}=0 & \text { non-linear classifier }
\end{array}
$$

Non-linear feature mappings

- The easiest way to make the classifier more powerful is to add non-linear coordinates to the feature vectors
- The classifier is still linear in the parameters, not inputs

$$
\begin{aligned}
\underline{x} & =\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right] \quad \rightarrow \quad \phi(\underline{x})=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{1}^{2} \\
\sqrt{2} x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right] \\
f\left(\underline{x} ; \underline{\theta}, \theta_{0}\right) & =\operatorname{sign}\left(\underline{\theta} \cdot \underline{x}+\theta_{0}\right)
\end{aligned}
$$

$$
f\left(\underline{x} ; \underline{\theta}, \theta_{0}\right)=\operatorname{sign}\left(\underline{\theta} \cdot \underline{\phi}(\underline{x})+\theta_{0}\right)
$$

$$
\underline{\theta} \cdot \underline{x}+\theta_{0}=0
$$

$$
\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{0}=0
$$

non-linear classifier
linear decision boundary

Non-linear feature mappings

- The easiest way to make the classifier more powerful is to add non-linear coordinates to the feature vectors
- The classifier is still linear in the parameters, not inputs

$$
\begin{gathered}
\underline{x}=\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right] \quad \rightarrow \quad \underline{\phi}(\underline{x})=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{1}^{2} \\
\sqrt{2} x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right] \\
0)=\operatorname{sign}\left(\underline{\theta} \cdot \underline{x}+\theta_{0}\right) \\
\text { linear classifier } \\
f\left(\underline{x} ; \underline{\theta}, \theta_{0}\right)=\operatorname{sign}\left(\underline{\theta} \cdot \underline{\phi}(\underline{x})+\theta_{0}\right) \\
\underline{\theta} \cdot \underline{\phi}(\underline{x})+\theta_{0}=0
\end{gathered}
$$

Non-linear feature mappings

- The easiest way to make the classifier more powerful is to add non-linear coordinates to the feature vectors
- The classifier is still linear in the parameters, not inputs

$$
\begin{aligned}
& \underline{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \rightarrow \quad \phi(\underline{x})=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{1}^{2} \\
\sqrt{2} x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right] \\
& 0)=\operatorname{sign}\left(\underline{\theta} \cdot \underline{x}+\theta_{0}\right)
\end{aligned}
$$

linear classifier

$$
f\left(\underline{x} ; \underline{\theta}, \theta_{0}\right)=\operatorname{sign}\left(\underline{\theta} \cdot \phi(\underline{x})+\theta_{0}\right)
$$

$$
\begin{gathered}
\underline{\theta} \cdot \underline{\phi}(\underline{x}) \stackrel{\text { non-linear classifier }}{+} \theta_{0}=0 \\
\theta_{1} x_{1}+\theta_{2} x_{2}+\theta_{3} x_{1}^{2}+\theta_{4} \sqrt{2} x_{1} x_{2}+\theta_{5} x_{2}^{2}+\theta_{0}=0
\end{gathered}
$$

Non-linear feature mappings

- By expanding the feature coordinates, we still have a linear classifier in the new feature coordinates but a non-linear classifier in the original coordinates

$$
f\left(\underline{x} ; \underline{\theta}, \theta_{0}\right)=\operatorname{sign}\left(\underline{\theta} \cdot \phi(\underline{x})+\theta_{0}\right)
$$

$$
f\left(\phi ; \underline{\theta}, \theta_{0}\right)=\operatorname{sign}\left(\underline{\theta} \cdot \phi+\theta_{0}\right)
$$

Learning non-linear classifiers

- We can apply the same SVM formulation, just replacing the input examples with (higher dimensional) feature vectors

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{2}\|\underline{\theta}\|^{2}
\end{aligned}+C \sum_{i=1}^{n} \xi_{i} \text { subject to } \quad \begin{aligned}
y_{i}\left(\underline{\theta} \cdot \underline{\phi}\left(\underline{x}_{i}\right)+\theta_{0}\right) & \geq 1-\xi_{i}, \quad i=1, \ldots, n \\
\xi_{i} & \geq 0, \quad i=1, \ldots, n
\end{aligned}
$$

- Note that the cost of solving this quadratic programming problem increases with the dimension of the feature vectors (we will avoid this issues by solving the dual instead)

Non-linear classifiers

- Many (low dimensional) problems are not solved well by a linear classifier even with slack
- By mapping examples to feature vectors, and maximizing a linear margin in the feature space, we obtain non-linear margin curves in the original space

linear features

2nd order features

Non-linear classifiers

- Many (low dimensional) problems are not solved well by a linear classifier even with slack
- By mapping examples to feature vectors, and maximizing a linear margin in the feature space, we obtain non-linear margin curves in the original space

$$
\phi(\underline{x})+\theta_{0}=-1
$$

linear features

Problems to resolve

By using non-linear feature mappings we get more powerful sets of classifiers

- Computational efficiency?
- the cost of using higher dimensional feature vectors (seems to) increase with the dimension
- Model selection?
- how do we choose among different feature mappings?

linear features

2nd order features

$3 r d$ order features

Non-linear perceptron, kernels

- Non-linear feature mappings can be dealt with more efficiently through their inner products or "kernels"
- We will begin by turning the perceptron classifier with non-linear features into a "kernel perceptron"
- For simplicity, we drop the offset parameter

$$
f(\underline{x} ; \underline{\theta})=\operatorname{sign}(\underline{\theta} \cdot \phi(\underline{x}))
$$

$$
\text { Initialize: } \underline{\theta}=0
$$

$$
\begin{gathered}
\text { For } t=1,2, \ldots \quad \begin{array}{c}
\text { (applied in a sequence or repeatedly } \\
\text { over a fixed training set) }
\end{array} \\
\text { if } y_{t}\left(\underline{\theta} \cdot \phi\left(\underline{x}_{t}\right)\right) \leq 0 \text { (mistake) } \\
\underline{\theta} \leftarrow \underline{\theta}+y_{t} \underline{\phi}\left(\underline{x}_{t}\right)
\end{gathered}
$$

On perceptron updates

- Each update adds $y_{t} \phi\left(\underline{x}_{t}\right)$ to the parameter vector
- Repeated updates on the same example simply result in adding the same term multiple times
- We can therefore write the current perceptron solution as a function of how many times we performed an update on each training example

$$
\begin{gathered}
\underline{\theta}=\sum_{i=1}^{n} \alpha_{i} y_{i} \phi\left(\underline{x}_{i}\right) \\
\alpha_{i} \in\{0,1, \ldots\}, \sum_{i=1}^{n} \alpha_{i}=\# \text { of mistakes }
\end{gathered}
$$

Kernel perceptron

- By switching to the "count" representation, we can write the perceptron algorithm entirely in terms of inner products between the feature vectors

$$
f(\underline{x} ; \underline{\theta})=\operatorname{sign}(\underline{\theta} \cdot \underline{\phi}(\underline{x}))=\operatorname{sign}\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\left[\underline{\phi}\left(\underline{x}_{i}\right) \cdot \underline{\phi}(\underline{x})\right]\right)
$$

Initialize: $\alpha_{i}=0, i=1, \ldots, n$
Repeat until convergence:

$$
\begin{aligned}
& \text { for } t=1, \ldots, n \\
& \text { if } y_{t}\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\left[\phi\left(\underline{x}_{i}\right) \cdot \phi\left(\underline{x}_{t}\right)\right]\right) \leq 0 \text { (mistake) } \\
& \qquad \alpha_{t} \leftarrow \alpha_{t}+1
\end{aligned}
$$

Kernel perceptron

- By switching to the "count" representation, we can write the perceptron algorithm entirely in terms of inner products between the feature vectors

$$
f(\underline{x} ; \underline{\theta})=\operatorname{sign}(\underline{\theta} \cdot \underline{\phi}(\underline{x}))=\operatorname{sign}\left(\sum_{i=1}^{n} \alpha_{i} y\left(\underline{\phi}\left(\underline{x}_{i}\right) \cdot \underline{\phi}(\underline{x}) \downarrow\right)\right.
$$

Initialize: $\alpha_{i}=0, i=1, \ldots, n$
Repeat until convergence:

$$
\begin{aligned}
& \text { for } t=1, \ldots, n \\
& \text { if } y_{t}\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\left(\underline{\left.\phi\left(x_{i}\right) \cdot \underline{\phi}\left(\underline{x}_{t}\right)\right)}\right]\right) \leq 0 \text { (mistake) } \\
& \qquad \alpha_{t} \leftarrow \alpha_{t}+1
\end{aligned}
$$

Feature mappings and kernels

- In the kernel perceptron algorithm, the feature vectors appear only as inner products
- Instead of explicitly constructing feature vectors, we can try to explicate their inner product or kernel
- $K: \mathcal{R}^{d} \times \mathcal{R}^{d} \rightarrow \mathcal{R}$ is a kernel function if there exists a feature mapping such that

$$
K\left(\underline{x}, \underline{x}^{\prime}\right)=\phi(\underline{x}) \cdot \phi\left(\underline{x}^{\prime}\right)
$$

Feature mappings and kernels

- In the kernel perceptron algorithm, the feature vectors appear only as inner products
- Instead of explicitly constructing feature vectors, we can try to explicate their inner product or kernel
- $K: \mathcal{R}^{d} \times \mathcal{R}^{d} \rightarrow \mathcal{R}$ is a kernel function if there exists a feature mapping such that

$$
\left.K\left(\underline{x}, \underline{x}^{\prime}\right)=\phi(\underline{x}) \cdot \underline{\left(\underline{x}^{\prime}\right.}\right)
$$

- Examples of polynomial kernels

$$
\begin{aligned}
K\left(\underline{x}, \underline{x}^{\prime}\right) & =\left(\underline{x} \cdot \underline{x}^{\prime}\right) \\
K\left(\underline{x}, \underline{x}^{\prime}\right) & =\left(\underline{x} \cdot \underline{x}^{\prime}\right)+\left(\underline{x} \cdot \underline{x}^{\prime}\right)^{2} \\
K\left(\underline{x}, \underline{x}^{\prime}\right) & =\left(\underline{x} \cdot \underline{x}^{\prime}\right)+\left(\underline{x} \cdot \underline{x}^{\prime}\right)^{2}+\left(\underline{x} \cdot \underline{x}^{\prime}\right)^{3} \\
K\left(\underline{x}, \underline{x}^{\prime}\right) & =\left(1+\underline{x} \cdot \underline{x}^{\prime}\right)^{p}, \quad p=1,2, \ldots
\end{aligned}
$$

Radial basis kernel

- The feature "vectors" corresponding to kernels may also be infinite dimensional (functions)
- This is the case, e.g., for the radial basis kernel

$$
K\left(\underline{x}, \underline{x}^{\prime}\right)=\exp \left(-\beta\left\|\underline{x}-\underline{x}^{\prime}\right\|^{2}\right), \quad \beta>0
$$

- Any distinct set of training points, regardless of their labels, are separable using this kernel function!

Kernel perceptron cont'd

- We can now apply the kernel perceptron algorithm without ever explicating the feature vectors

$$
f(\underline{x} ; \alpha)=\operatorname{sign}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(\underline{x}_{i}, \underline{x}\right)\right)
$$

Initialize: $\alpha_{i}=0, i=1, \ldots, n$
Repeat until convergence:

$$
\begin{aligned}
& \text { for } t=1, \ldots, n \\
& \text { if } y_{t}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(\underline{x}_{i}, \underline{x}_{t}\right)\right) \leq 0 \text { (mistake) } \\
& \qquad \alpha_{t} \leftarrow \alpha_{t}+1
\end{aligned}
$$

Kernel perceptron: example

- With a radial basis kernel

$$
f(\underline{x} ; \alpha)=\operatorname{sign}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(\underline{x}_{i}, \underline{x}\right)\right)
$$

Kernel SVM

- We can also turn SVM into its dual (kernel) form and implicitly find the max-margin linear separator in the feature space, e.g., corresponding to the radial basis kernel

$$
f(\underline{x} ; \alpha)=\operatorname{sign}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} K\left(\underline{x}_{i}, \underline{x}\right)+\theta_{0}\right)
$$

Extra Slides

Composition rules for kernels

- We can construct valid kernels from simple components
- For any function $f: R^{d} \rightarrow R$, if K_{I} is a kernel, then so is

$$
\text { I) } K\left(\underline{x}, \underline{x}^{\prime}\right)=f(\underline{x}) K_{1}\left(\underline{x}, \underline{x}^{\prime}\right) f\left(\underline{x}^{\prime}\right)
$$

- The set of kernel functions is closed under addition and multiplication: if K_{1} and K_{2} are kernels, then so are

$$
\begin{aligned}
& \text { 2) } \quad K\left(\underline{x}, \underline{x}^{\prime}\right)=K_{1}\left(\underline{x}, \underline{x}^{\prime}\right)+K_{2}\left(\underline{x}, \underline{x}^{\prime}\right) \\
& \text { 3) } K\left(\underline{x}, \underline{x}^{\prime}\right)=K_{1}\left(\underline{x}, \underline{x}^{\prime}\right) K_{2}\left(\underline{x}, \underline{x}^{\prime}\right)
\end{aligned}
$$

- The composition rules are also helpful in verifying that a kernel is valid (i.e., corresponds to an inner product of some feature vectors)

Radial basis kernel

- The feature "vectors" corresponding to kernels may also be infinite dimensional (functions)
- This is the case, e.g., for the radial basis kernel

$$
K\left(\underline{x}, \underline{x}^{\prime}\right)=\exp \left(-\beta\left\|\underline{x}-\underline{x}^{\prime}\right\|^{2}\right), \quad \beta>0
$$

- Any distinct set of training points, regardless of their labels, are separable using this kernel function!

Radial basis kernel

- The feature "vectors" corresponding to kernels may also be infinite dimensional (functions)
- This is the case, e.g., for the radial basis kernel

$$
K\left(\underline{x}, \underline{x}^{\prime}\right)=\exp \left(-\beta\left\|\underline{x}-\underline{x}^{\prime}\right\|^{2}\right), \quad \beta>0
$$

- Any distinct set of training points, regardless of their labels, are separable using this kernel function!
- We can use the composition rules to show that this is indeed a valid kernel

$$
\exp \left\{-\beta\left\|\underline{x}-\underline{x}^{\prime}\right\|^{2}\right\}=\exp \left\{-\beta \underline{x} \cdot \underline{x}+2 \underline{x} \cdot \underline{x}^{\prime}-\beta \underline{x}^{\prime} \cdot \underline{x}^{\prime}\right\}
$$

Radial basis kernel

- The feature "vectors" corresponding to kernels may also be infinite dimensional (functions)
- This is the case, e.g., for the radial basis kernel

$$
K\left(\underline{x}, \underline{x}^{\prime}\right)=\exp \left(-\beta\left\|\underline{x}-\underline{x}^{\prime}\right\|^{2}\right), \quad \beta>0
$$

- Any distinct set of training points, regardless of their labels, are separable using this kernel function!
- We can use the composition rules to show that this is indeed a valid kernel

$$
\begin{aligned}
\exp \left\{-\beta\left\|\underline{x}-\underline{x}^{\prime}\right\|^{2}\right\} & =\exp \left\{-\beta \underline{x} \cdot \underline{x}+2 \beta \underline{x} \cdot \underline{x}^{\prime}-\beta \underline{x}^{\prime} \cdot \underline{x}^{\prime}\right\} \\
& =\overbrace{\exp \{-\beta \underline{x} \cdot \underline{x}\}}^{f(\underline{x})} \exp \left\{2 \beta \underline{x} \cdot \underline{x}^{\prime}\right\} \overbrace{\exp \left\{-\beta \underline{x}^{\prime} \cdot \underline{x}^{\prime}\right\}}^{f\left(\underline{x}^{\prime}\right)}
\end{aligned}
$$

Radial basis kernel

- The feature "vectors" corresponding to kernels may also be infinite dimensional (functions)
- This is the case, e.g., for the radial basis kernel

$$
K\left(\underline{x}, \underline{x}^{\prime}\right)=\exp \left(-\beta\left\|\underline{x}-\underline{x}^{\prime}\right\|^{2}\right), \quad \beta>0
$$

- Any distinct set of training points, regardless of their labels, are separable using this kernel function!
- We can use the composition rules to show that this is indeed a valid kernel

$$
\begin{aligned}
\exp \left\{-\beta\left\|\underline{x}-\underline{x}^{\prime}\right\|^{2}\right\} & =\exp \left\{-\beta \underline{x} \cdot \underline{x}+2 \beta \underline{x} \cdot \underline{x}^{\prime}-\beta \underline{x}^{\prime} \cdot \underline{x}^{\prime}\right\} \\
& =\overbrace{\exp \{-\beta \underline{x} \cdot \underline{x}\}}^{f(x)} \exp \left\{2 \beta \underline{x} \cdot \underline{x}^{\prime}\right\} \overbrace{\exp \left\{-\beta \underline{x}^{\prime} \cdot \underline{x}^{\prime}\right\}}^{f\left(\underline{x}^{\prime}\right)} \\
& =f(\underline{x}) \underbrace{\left(1+2 \beta\left(\underline{x} \cdot \underline{x}^{\prime}\right)+\ldots\right)}_{\text {Infinite Taylor series expansion }} f\left(\underline{x}^{\prime}\right)
\end{aligned}
$$

Kernels

- By writing the algorithm in a "kernel" form, we can try to work with the kernel (inner product) directly rather than explicating the high dimensional feature vectors

$$
\begin{align*}
K\left(\underline{x}, \underline{x}^{\prime}\right) & =\phi(\underline{x}) \cdot \phi\left(\underline{x}^{\prime}\right) \\
& =[?] \cdot[?] \\
& =\exp \left(-\left\|\underline{x}-\underline{x}^{\prime}\right\|^{2}\right) \tag{e.g.}
\end{align*}
$$

- All we need to ensure is that the kernel is "valid", i.e., there exists some underlying feature representation

Valid kernels

- A kernel function is valid (is a kernel) if there exists some feature mapping such that

$$
K\left(\underline{x}, \underline{x}^{\prime}\right)=\phi(\underline{x}) \cdot \phi\left(\underline{x}^{\prime}\right)
$$

- Equivalently, a kernel is valid if it is symmetric and for all training sets, the Gram matrix

$$
\left[\begin{array}{rrr}
K\left(\underline{x}_{1}, \underline{x}_{1}\right) & \cdots & K\left(\underline{x}_{1}, \underline{x}_{n}\right) \\
\cdots & \cdots & \cdots \\
K\left(\underline{x}_{n}, \underline{x}_{1}\right) & \cdots & K\left(\underline{x}_{n}, \underline{x}_{n}\right)
\end{array}\right]
$$

is positive semi-definite

