CMSC 478 Machine Learning

KMA Solaiman ksolaima@umbc.edu

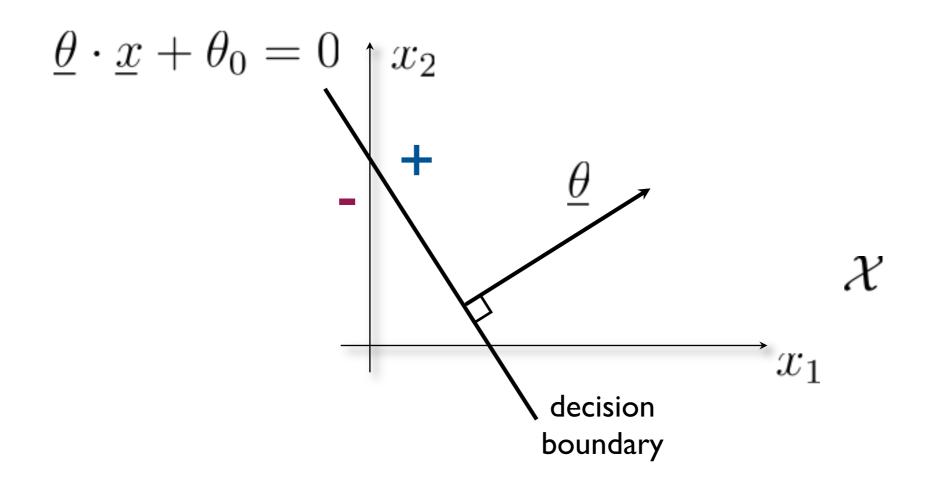
(originally prepared by Tommi Jaakkola, MIT CSAIL)

Linear classifiers (with offset)

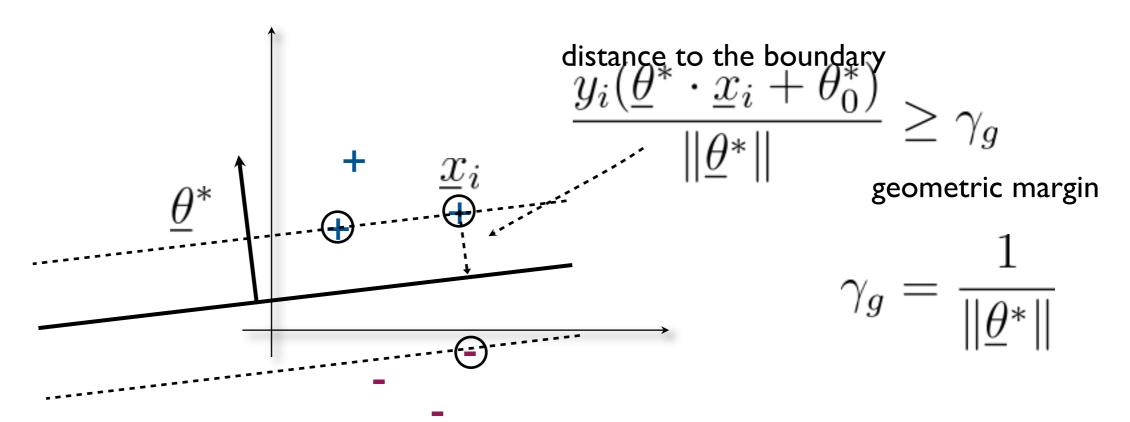
• A linear classifier with parameters $(\underline{\theta}, \theta_0)$

$$f(\underline{x}; \underline{\theta}, \theta_0) = \operatorname{sign}(\underline{\theta} \cdot \underline{x} + \theta_0)$$

$$= \begin{cases} +1, & \text{if } \underline{\theta} \cdot \underline{x} + \theta_0 > 0 \\ -1, & \text{if } \underline{\theta} \cdot \underline{x} + \theta_0 \le 0 \end{cases}$$



Support vector machine



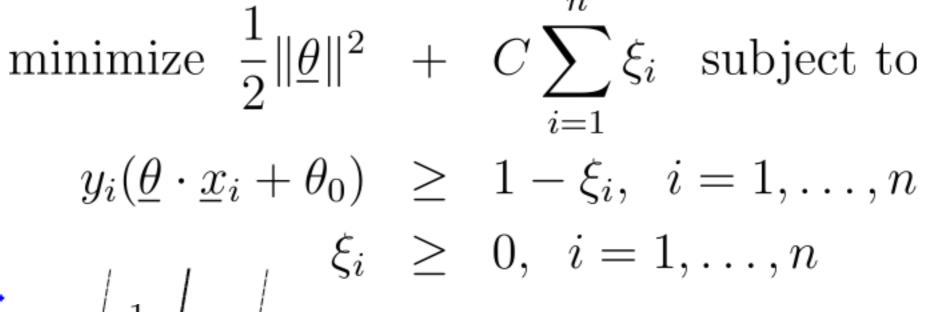
To find
$$\underline{\theta}^*, \theta_0^*$$
:

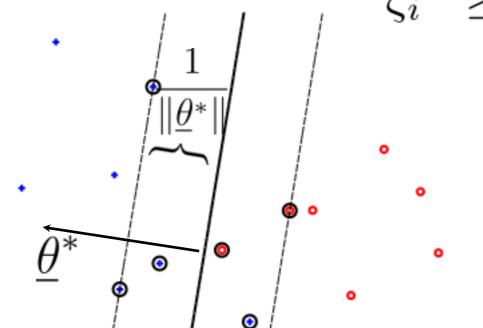
minimize
$$\frac{1}{2} \|\underline{\theta}\|^2$$
 subject to $y_i(\underline{\theta} \cdot \underline{x}_i + \theta_0) \ge 1, \quad i = 1, \dots, n$

- We get a max-margin decision boundary by solving a quadratic programming problem
- The solution is unique and sparse (support vectors)

Support vector machine

Relaxed quadratic optimization problem

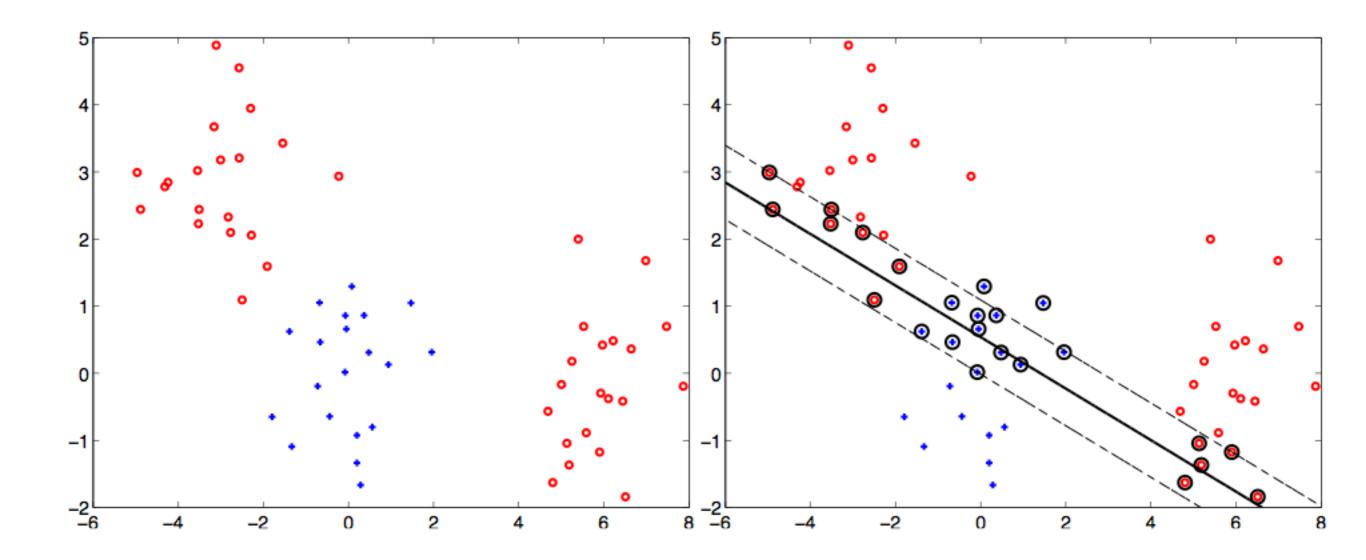




The value of C is an additional parameter we have to set

Beyond linear classifiers...

- Many problems are not solved well by a linear classifier even if we allow misclassified examples (SVM with slack)
- E.g., data from experiments typically involve "clusters" of different types of examples



- The easiest way to make the classifier more powerful is to add non-linear coordinates to the feature vectors
- The classifier is still linear in the parameters, not inputs

$$\underline{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \rightarrow \quad \underline{\phi}(\underline{x}) = \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix}$$

$$f(\underline{x}; \underline{\theta}, \theta_0) = \mathrm{sign}(\underline{\theta} \cdot \underline{x} + \theta_0) \qquad f(\underline{x}; \underline{\theta}, \theta_0) = \mathrm{sign}(\underline{\theta} \cdot \underline{\phi}(\underline{x}) + \theta_0)$$
 linear classifier

non-linear classifier

- The easiest way to make the classifier more powerful is to add non-linear coordinates to the feature vectors
- The classifier is still linear in the parameters, not inputs

$$\underline{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \rightarrow \phi(\underline{x}) = \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix}$$

$$f(\underline{x}; \underline{\theta}, \theta_0) = \operatorname{sign}(\underline{\theta} \cdot \underline{x} + \theta_0) = \operatorname{sign}(\underline{\theta} \cdot \phi(\underline{x})) = \operatorname{sign}(\underline{\theta} \cdot \phi(\underline{x}))$$

linear classifier

$$\underline{\theta} \cdot \underline{x} + \theta_0 = 0$$

$$f(\underline{x}; \underline{\theta}, \theta_0) = \operatorname{sign}(\underline{\theta} \cdot \underline{\phi}(\underline{x}) + \theta_0)$$

non-linear classifier

- The easiest way to make the classifier more powerful is to add non-linear coordinates to the feature vectors
- The classifier is still linear in the parameters, not inputs

$$\underline{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \rightarrow \phi(\underline{x}) = \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix}$$

$$f(\underline{x}; \underline{\theta}, \theta_0) = \operatorname{sign}(\underline{\theta} \cdot \underline{x} + \theta_0) = \operatorname{sign}(\underline{\theta} \cdot \underline{\phi})$$

$$f(\underline{x}; \underline{\theta}, \theta_0) = \operatorname{sign}(\underline{\theta} \cdot \underline{\phi})$$

linear classifier

$$\underline{\theta} \cdot \underline{x} + \theta_0 = 0$$
$$\theta_1 x_1 + \theta_2 x_2 + \theta_0 = 0$$

$$f(\underline{x}; \underline{\theta}, \theta_0) = \operatorname{sign}(\underline{\theta} \cdot \underline{\phi}(\underline{x}) + \theta_0)$$

non-linear classifier

linear decision boundary

- The easiest way to make the classifier more powerful is to add non-linear coordinates to the feature vectors
- The classifier is still linear in the parameters, not inputs

$$\underline{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \rightarrow \phi(\underline{x}) = \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix}$$

$$f(\underline{x}; \underline{\theta}, \theta_0) = \operatorname{sign}(\underline{\theta} \cdot \underline{x} + \theta_0) = \operatorname{sign}(\underline{\theta} \cdot \phi(\underline{x}))$$

$$f(\underline{x}; \underline{\theta}, \theta_0) = \operatorname{sign}(\underline{\theta} \cdot \phi(\underline{x})) = \operatorname{sign}(\underline{\theta} \cdot \phi(\underline{x}))$$

linear classifier

$$f(\underline{x}; \underline{\theta}, \theta_0) = \operatorname{sign}(\underline{\theta} \cdot \underline{\phi}(\underline{x}) + \theta_0)$$

non-linear classifier
$$\underline{\theta} \cdot \underline{\phi}(\underline{x}) + \theta_0 = 0$$

- The easiest way to make the classifier more powerful is to add non-linear coordinates to the feature vectors
- The classifier is still linear in the parameters, not inputs

$$\underline{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \rightarrow \phi(\underline{x}) = \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix}$$

$$f(\underline{x}; \underline{\theta}, \theta_0) = \operatorname{sign}(\underline{\theta} \cdot \underline{x} + \theta_0)$$

$$f(\underline{x}; \underline{\theta}, \theta_0) = \operatorname{sign}(\underline{\theta} \cdot \underline{\phi}) = \operatorname{sign}(\underline{\theta} \cdot \underline{\phi})$$

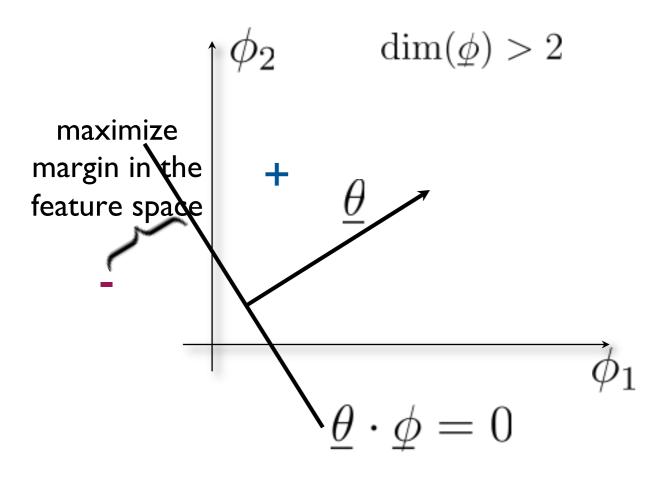
linear classifier

$$f(\underline{x}; \underline{\theta}, \theta_0) = \operatorname{sign}(\underline{\theta} \cdot \underline{\phi}(\underline{x}) + \theta_0)$$

non-linear classifier
$$\frac{\theta\cdot\phi(\underline{x})+\theta_0=0}{\theta_1x_1+\theta_2x_2+\theta_3x_1^2+\theta_4\sqrt{2}x_1x_2+\theta_5x_2^2+\theta_0=0}$$

non-linear decision boundary

• By expanding the feature coordinates, we still have a linear classifier in the new feature coordinates but a non-linear classifier in the original coordinates



$$\frac{1}{2} \frac{\dim(\underline{x}) = 2}{+}$$

$$\underline{\theta} \cdot \underline{\phi}(\underline{x}) = 0$$

$$x_1$$

$$f(\underline{x}; \underline{\theta}, \theta_0) = \operatorname{sign}(\underline{\theta} \cdot \underline{\phi}(\underline{x}) + \theta_0)$$

$$f(\underline{\phi}; \underline{\theta}, \theta_0) = \operatorname{sign}(\underline{\theta} \cdot \underline{\phi} + \theta_0)$$

Learning non-linear classifiers

 We can apply the same SVM formulation, just replacing the input examples with (higher dimensional) feature vectors

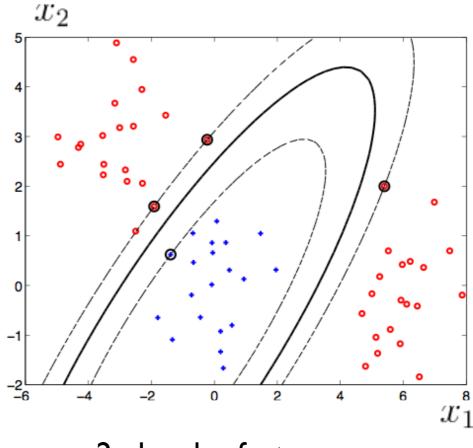
minimize
$$\frac{1}{2} \|\underline{\theta}\|^2 + C \sum_{i=1}^n \xi_i$$
 subject to $y_i(\underline{\theta} \cdot \underline{\phi}(\underline{x}_i) + \theta_0) \geq 1 - \xi_i, i = 1, \dots, n$ $\xi_i \geq 0, i = 1, \dots, n$

 Note that the cost of solving this quadratic programming problem increases with the dimension of the feature vectors (we will avoid this issues by solving the dual instead)

Non-linear classifiers

- Many (low dimensional) problems are not solved well by a linear classifier even with slack
- By mapping examples to feature vectors, and maximizing a linear margin in the feature space, we obtain non-linear margin curves in the original space





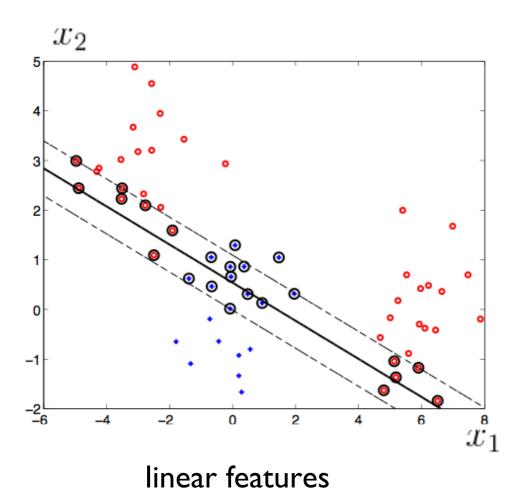
2nd order features

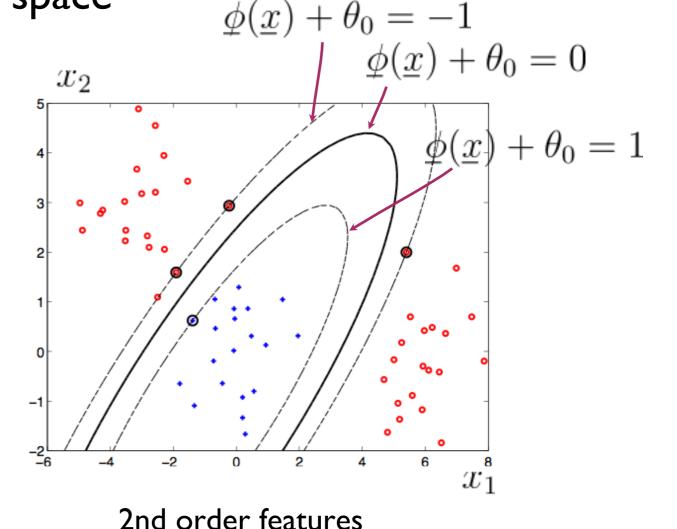
Non-linear classifiers

 Many (low dimensional) problems are not solved well by a linear classifier even with slack

• By mapping examples to feature vectors, and maximizing a linear margin in the feature space, we obtain non-linear

margin curves in the original space

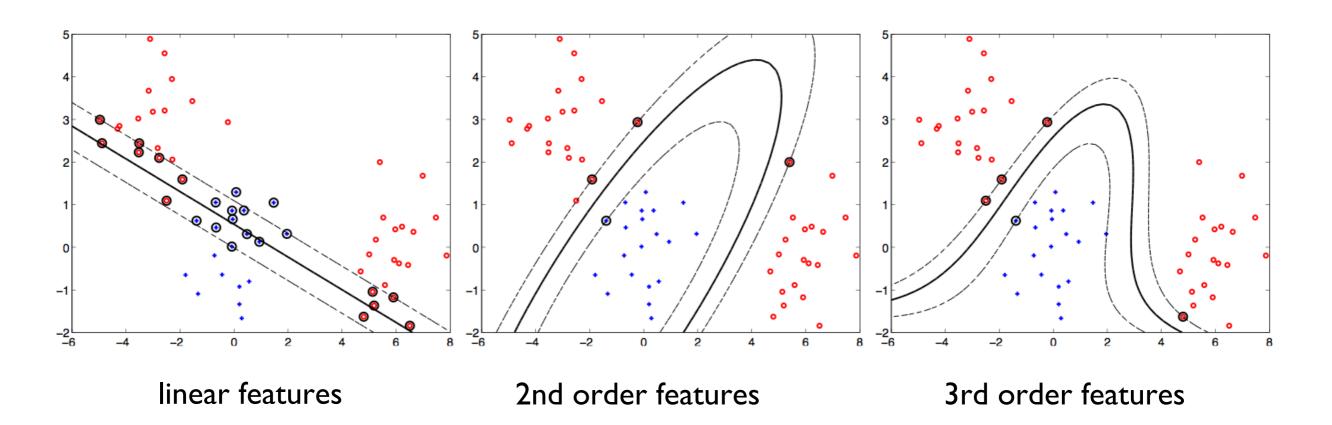




Problems to resolve

By using non-linear feature mappings we get more powerful sets of classifiers

- Computational efficiency?
 - the cost of using higher dimensional feature vectors (seems to) increase with the dimension
- Model selection?
 - how do we choose among different feature mappings?



Non-linear perceptron, kernels

- Non-linear feature mappings can be dealt with more efficiently through their inner products or "kernels"
- We will begin by turning the perceptron classifier with non-linear features into a "kernel perceptron"
- For simplicity, we drop the offset parameter

$$f(\underline{x}; \underline{\theta}) = \operatorname{sign}(\underline{\theta} \cdot \underline{\phi}(\underline{x}))$$
Initialize: $\underline{\theta} = 0$
For $t = 1, 2, \dots$ (applied in a sequence or repeatedly over a fixed training set)
if $y_t(\underline{\theta} \cdot \underline{\phi}(\underline{x}_t)) \leq 0$ (mistake)
$$\underline{\theta} \leftarrow \underline{\theta} + y_t \underline{\phi}(\underline{x}_t)$$

On perceptron updates

- Each update adds $y_t \phi(\underline{x}_t)$ to the parameter vector
- Repeated updates on the same example simply result in adding the same term multiple times
- We can therefore write the current perceptron solution as a function of how many times we performed an update on each training example

$$\underline{\theta} = \sum_{i=1}^{n} \alpha_i \, y_i \underline{\phi}(\underline{x}_i)$$

$$\alpha_i \in \{0, 1, \ldots\}, \sum_{i=1}^n \alpha_i = \# \text{ of mistakes}$$

Kernel perceptron

• By switching to the "count" representation, we can write the perceptron algorithm entirely in terms of inner products between the feature vectors

$$f(\underline{x}; \underline{\theta}) = \operatorname{sign}(\underline{\theta} \cdot \underline{\phi}(\underline{x})) = \operatorname{sign}(\sum_{i=1}^{n} \alpha_i y_i [\underline{\phi}(\underline{x}_i) \cdot \underline{\phi}(\underline{x})])$$

Initialize: $\alpha_i = 0, i = 1, ..., n$ Repeat until convergence:

for
$$t = 1, ..., n$$

if $y_t \left(\sum_{i=1}^n \alpha_i y_i [\phi(\underline{x}_i) \cdot \phi(\underline{x}_t)] \right) \leq 0$ (mistake)
 $\alpha_t \leftarrow \alpha_t + 1$

Kernel perceptron

• By switching to the "count" representation, we can write the perceptron algorithm entirely in terms of inner products between the feature vectors

$$f(\underline{x}; \underline{\theta}) = \operatorname{sign}(\underline{\theta} \cdot \underline{\phi}(\underline{x})) = \operatorname{sign}(\sum_{i=1}^{n} \alpha_i y_i (\underline{\phi}(\underline{x}_i) \cdot \underline{\phi}(\underline{x})))$$

Initialize: $\alpha_i = 0, i = 1, ..., n$ Repeat until convergence:

for
$$t = 1, ..., n$$

if $y_t \left(\sum_{i=1}^n \alpha_i y_i \left(\underline{\phi}(\underline{x}_i) \cdot \underline{\phi}(\underline{x}_t) \right) \right) \leq 0$ (mistake)
 $\alpha_t \leftarrow \alpha_t + 1$

Feature mappings and kernels

- In the kernel perceptron algorithm, the feature vectors appear only as inner products
- Instead of explicitly constructing feature vectors, we can try to explicate their inner product or kernel
- $K: \mathcal{R}^d \times \mathcal{R}^d \to \mathcal{R}$ is a kernel function if there exists a feature mapping such that

$$K(\underline{x},\underline{x}') = \phi(\underline{x}) \cdot \phi(\underline{x}')$$

Feature mappings and kernels

- In the kernel perceptron algorithm, the feature vectors appear only as inner products
- Instead of explicitly constructing feature vectors, we can try to explicate their inner product or kernel
- $K: \mathcal{R}^d \times \mathcal{R}^d \to \mathcal{R}$ is a kernel function if there exists a feature mapping such that

$$K(\underline{x},\underline{x}') = \phi(\underline{x}) \cdot \phi(\underline{x}')$$

Examples of polynomial kernels

$$K(\underline{x}, \underline{x}') = (\underline{x} \cdot \underline{x}')$$

$$K(\underline{x}, \underline{x}') = (\underline{x} \cdot \underline{x}') + (\underline{x} \cdot \underline{x}')^{2}$$

$$K(\underline{x}, \underline{x}') = (\underline{x} \cdot \underline{x}') + (\underline{x} \cdot \underline{x}')^{2} + (\underline{x} \cdot \underline{x}')^{3}$$

$$K(\underline{x}, \underline{x}') = (1 + \underline{x} \cdot \underline{x}')^{p}, \quad p = 1, 2, \dots$$

- The feature "vectors" corresponding to kernels may also be infinite dimensional (functions)
- This is the case, e.g., for the radial basis kernel

$$K(\underline{x}, \underline{x}') = \exp\left(-\beta \|\underline{x} - \underline{x}'\|^2\right), \quad \beta > 0$$

 Any distinct set of training points, regardless of their labels, are separable using this kernel function!

Kernel perceptron cont'd

 We can now apply the kernel perceptron algorithm without ever explicating the feature vectors

$$f(\underline{x}; \alpha) = \text{sign}\left(\sum_{i=1}^{n} \alpha_i y_i K(\underline{x}_i, \underline{x})\right)$$

Initialize: $\alpha_i = 0, i = 1, ..., n$ Repeat until convergence:

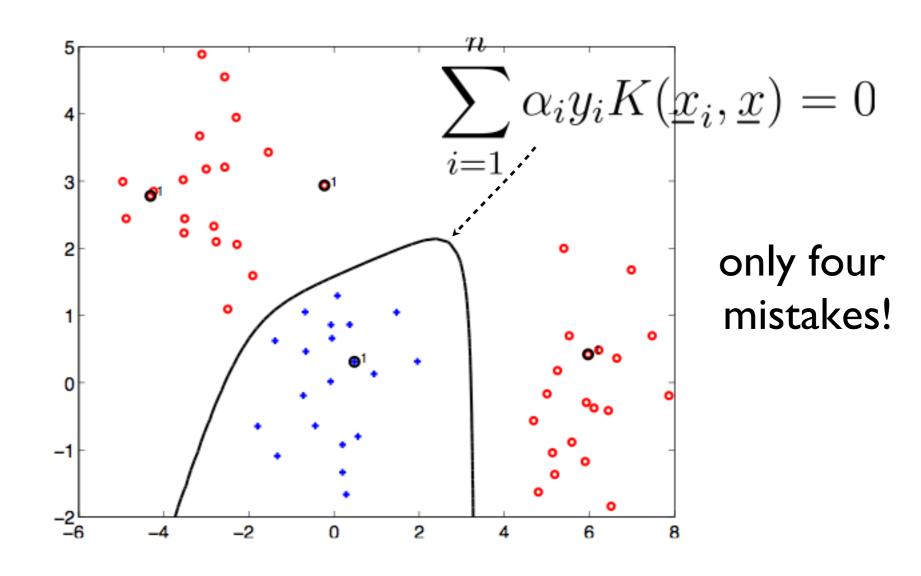
for
$$t = 1, ..., n$$

if $y_t \left(\sum_{i=1}^n \alpha_i y_i K(\underline{x}_i, \underline{x}_t) \right) \leq 0$ (mistake)
 $\alpha_t \leftarrow \alpha_t + 1$

Kernel perceptron: example

With a radial basis kernel

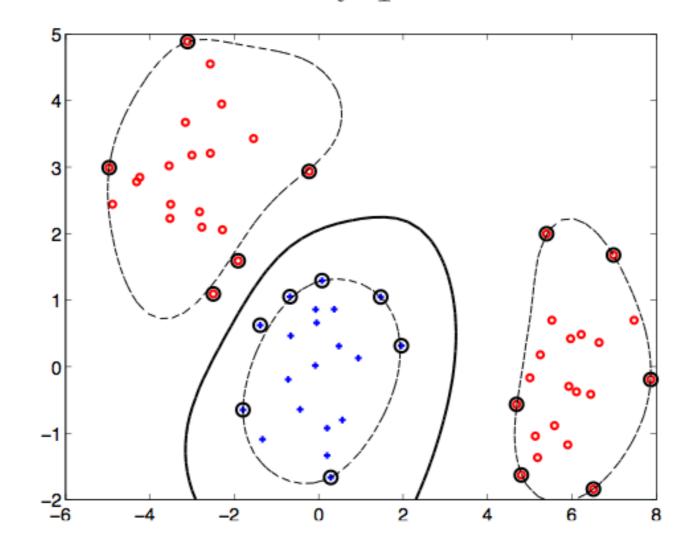
$$f(\underline{x}; \alpha) = \text{sign}\left(\sum_{i=1}^{n} \alpha_i y_i K(\underline{x}_i, \underline{x})\right)$$

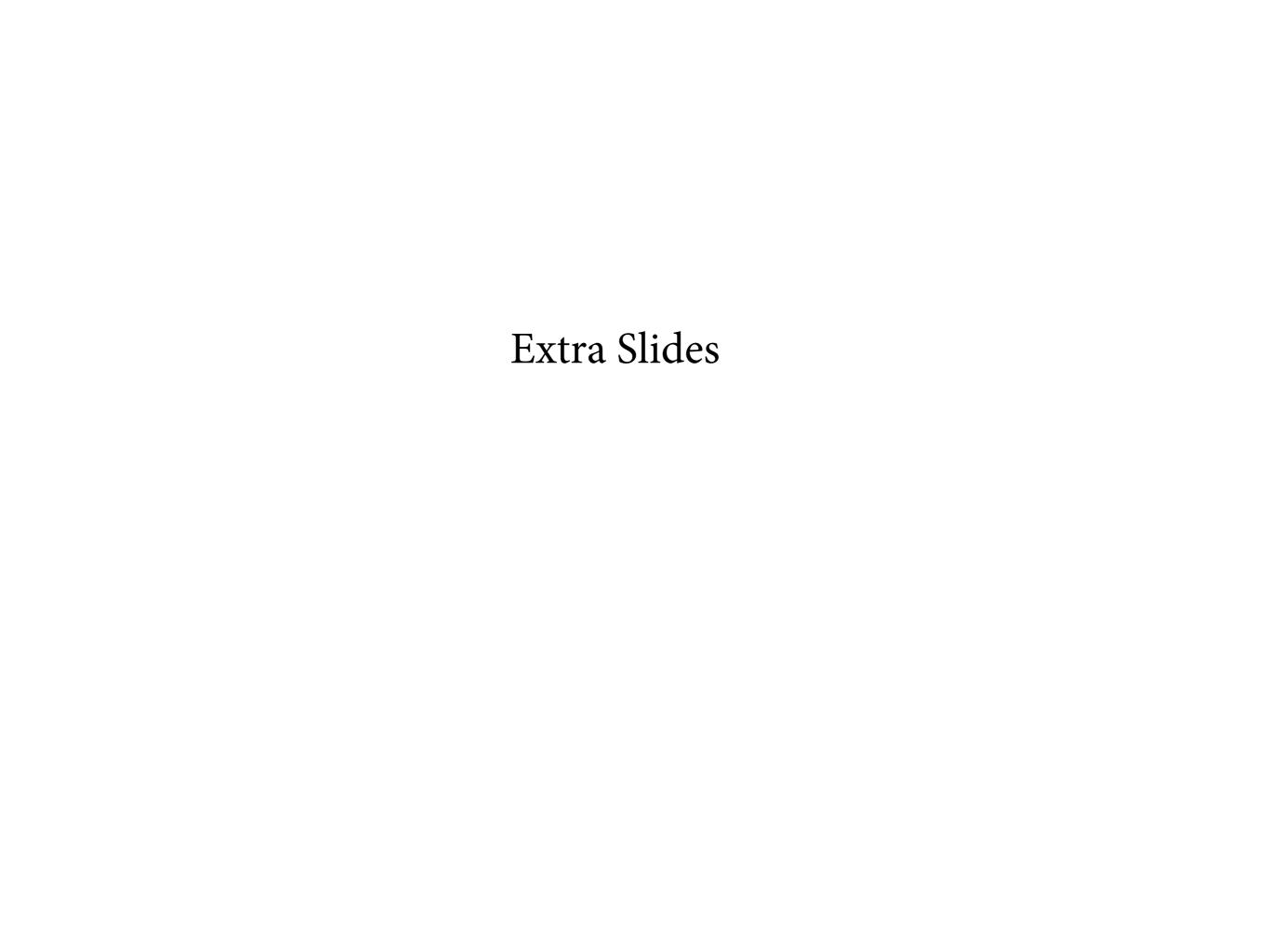


Kernel SVM

• We can also turn SVM into its dual (kernel) form and implicitly find the max-margin linear separator in the feature space, e.g., corresponding to the radial basis kernel n

$$f(\underline{x}; \alpha) = \text{sign}\left(\sum_{i=1}^{n} \alpha_i y_i K(\underline{x}_i, \underline{x}) + \theta_0\right)$$





Composition rules for kernels

- We can construct valid kernels from simple components
- For any function $f:R^d\to R$, if K_1 is a kernel, then so is

$$K(\underline{x},\underline{x}') = f(\underline{x})K_1(\underline{x},\underline{x}')f(\underline{x}')$$

• The set of kernel functions is closed under addition and multiplication: if K_1 and K_2 are kernels, then so are

2)
$$K(\underline{x},\underline{x}') = K_1(\underline{x},\underline{x}') + K_2(\underline{x},\underline{x}')$$

3)
$$K(\underline{x},\underline{x}') = K_1(\underline{x},\underline{x}')K_2(\underline{x},\underline{x}')$$

 The composition rules are also helpful in verifying that a kernel is valid (i.e., corresponds to an inner product of some feature vectors)

- The feature "vectors" corresponding to kernels may also be infinite dimensional (functions)
- This is the case, e.g., for the radial basis kernel

$$K(\underline{x}, \underline{x}') = \exp\left(-\beta \|\underline{x} - \underline{x}'\|^2\right), \quad \beta > 0$$

 Any distinct set of training points, regardless of their labels, are separable using this kernel function!

- The feature "vectors" corresponding to kernels may also be infinite dimensional (functions)
- This is the case, e.g., for the radial basis kernel

$$K(\underline{x}, \underline{x}') = \exp\left(-\beta \|\underline{x} - \underline{x}'\|^2\right), \quad \beta > 0$$

- Any distinct set of training points, regardless of their labels, are separable using this kernel function!
- We can use the composition rules to show that this is indeed a valid kernel

$$\exp\{-\beta \|\underline{x} - \underline{x}'\|^2\} = \exp\{-\beta \underline{x} \cdot \underline{x} + 2\beta \underline{x} \cdot \underline{x}' - \beta \underline{x}' \cdot \underline{x}'\}$$

- The feature "vectors" corresponding to kernels may also be infinite dimensional (functions)
- This is the case, e.g., for the radial basis kernel

$$K(\underline{x}, \underline{x}') = \exp\left(-\beta \|\underline{x} - \underline{x}'\|^2\right), \quad \beta > 0$$

- Any distinct set of training points, regardless of their labels, are separable using this kernel function!
- We can use the composition rules to show that this is indeed a valid kernel

$$\exp\{-\beta \|\underline{x} - \underline{x}'\|^2\} = \exp\{-\beta \underline{x} \cdot \underline{x} + 2\beta \underline{x} \cdot \underline{x}' - \beta \underline{x}' \cdot \underline{x}'\}$$

$$= \exp\{-\beta \underline{x} \cdot \underline{x}\} \exp\{2\beta \underline{x} \cdot \underline{x}'\} \exp\{-\beta \underline{x}' \cdot \underline{x}'\}$$

- The feature "vectors" corresponding to kernels may also be infinite dimensional (functions)
- This is the case, e.g., for the radial basis kernel

$$K(\underline{x}, \underline{x}') = \exp\left(-\beta \|\underline{x} - \underline{x}'\|^2\right), \quad \beta > 0$$

- Any distinct set of training points, regardless of their labels, are separable using this kernel function!
- We can use the composition rules to show that this is indeed a valid kernel

$$\exp\{-\beta\|\underline{x}-\underline{x}'\|^2\} = \exp\{-\beta\underline{x}\cdot\underline{x}+2\beta\underline{x}\cdot\underline{x}'-\beta\underline{x}'\cdot\underline{x}'\}$$

$$= \exp\{-\beta\underline{x}\cdot\underline{x}\}\exp\{2\beta\underline{x}\cdot\underline{x}'\}\underbrace{\exp\{-\beta\underline{x}'\cdot\underline{x}'\}}_{f(\underline{x}')}$$

$$= e^z = \sum_{k=0}^{\infty} \frac{z^k}{k!} = 1+z+\frac{z^2}{2!}+\frac{z^3}{3!}+\dots$$

$$= \inf\{-\beta\underline{x}\cdot\underline{x}+2\beta\underline{x}\cdot\underline{x}'-\beta\underline{x}'\cdot\underline{x}'\}\underbrace{\exp\{-\beta\underline{x}'\cdot\underline{x}'\}}_{f(\underline{x}')}$$

$$= f(\underline{x})\left(1+2\beta(\underline{x}\cdot\underline{x}')+\dots\right)f(\underline{x}')$$

$$\leftarrow \text{Infinite Taylor series expansion}$$

Kernels

 By writing the algorithm in a "kernel" form, we can try to work with the kernel (inner product) directly rather than explicating the high dimensional feature vectors

$$K(\underline{x}, \underline{x}') = \phi(\underline{x}) \cdot \phi(\underline{x}')$$

$$= \begin{bmatrix} ? \\ ? \end{bmatrix} \cdot \begin{bmatrix} ? \\ ? \end{bmatrix}$$

$$= \exp(-||\underline{x} - \underline{x}'||^2) \quad \text{(e.g.)}$$

• All we need to ensure is that the kernel is "valid", i.e., there exists some underlying feature representation

Valid kernels

 A kernel function is valid (is a kernel) if there exists some feature mapping such that

$$K(\underline{x},\underline{x}') = \phi(\underline{x}) \cdot \phi(\underline{x}')$$

 Equivalently, a kernel is valid if it is symmetric and for all training sets, the Gram matrix

$$\begin{bmatrix} K(\underline{x}_1, \underline{x}_1) & \cdots & K(\underline{x}_1, \underline{x}_n) \\ \cdots & \cdots & \cdots \\ K(\underline{x}_n, \underline{x}_1) & \cdots & K(\underline{x}_n, \underline{x}_n) \end{bmatrix}$$

is positive semi-definite