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Today’s topics

* Perceptron, convergence
- the prediction game
- mistakes, margin, and generalization

* Maximum margin classifier -- support vector machine
- estimation, properties

- allowing misclassified points



Recall: linear classifiers

* A linear classifier (through origin) with parameters
divides the space into positive and negative halves

flz;0) = Sign(Q-:_v):sign(91x1+...+9dazd)

B _|_1’ if Q L x> () discriminant function
= ) =1, iff-2<0

b o

decision boundary



The perceptron algorithm

* A sequence of examples and labels
(gjtayt)a t = 1727 Lo

® The perceptron algorithm applied to the sequence
Initialize: 6 =0
Fort=1,2,...
if y,(0 - x;) <0 (mistake)
0 — 0+ yxy

* We would like to bound the number of mistakes that the
algorithm makes



Mistakes and margin
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- large margin
- few mistakes - - X
> :JL.]-
Y o
+
+
Harder problem +
- small margin +
- many mistakes
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Support vector /

Optimal Hyperplane




* Arandom point X
* right side of the hyper plane or
* |eft side of the hyper plane




=l

<l
2

=l

W is perpendicular to the hyperplane
distance of W from origin to decision
boundary is ¢

=c¢ (the point lies on the decision boundary)
> ¢ (positive samples)

< ¢ (negative samples)




Margin in SVM

Without offset
+1, ifw.x>0
y =

—1, ifw.x<0
* b=0
* Hyperplane through origin

With offset

|+, ifw.x+b>0
Y=1-1, ifw.x +b<0
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Maximum margin classifier

yi(0" - z;) y
e
geometric margin
1
Y9 = 1o+
T llee]
1 .
maximize m subject to

To find 6" :



Maximum margin classifier

geometric margin

1
Vg = T
T llee|

To find 0* - minimize ||#|| subject to
g0 >1, i=1,....n



Support vector machine

Yi (Q* ) gz,) /
e
geometric margin
1
’7 —
T e

1
minimize §H 0]|* subject to

To find 0" :

* This is a quadratic programming problem (quadratic
objective, linear constraints)

* The solution is unique, typically obtained in the dual



Support vector machine

= geometric margin

9* U = —1 1
minimize §HQH2 subject to

To find 0" :



Support vector machine

support vector

” = geometric margin

. 1
2 (minimum) 5 |0 HQ

. 0 -x) =1
The solution is Y1 (— —1> T~ | |
0* - active constraints
sparse Y2 (_ '232) > 1 = support vectors

B /
e




Is sparse solution good?

support vector

®* We can simulate test performance by evaluating Leave-
One-Out Cross-Validation error

LOOCV(8*) < # of support vectors

n
Intuitively:
if you remove the support vector from the training set, and you receive the
support vector as a test point, then you would make a mistake



Linear classifiers (with offset)

* A linear classifier with parameters (Q’ 90)

f(z;0,00) = sign(6-z+6,)
B +1, if0-x+6, >0
B —1, if0-2+0, <O

+
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decision
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Support vector machine
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minimize 5” 0]|* subject to

To find 6%, 0 :

* Still a quadratic programming problem (quadratic
objective, linear constraints)



The impact of offset

* Adding the offset parameter to the linear classifier can
substantially increase the margin

1
minimize §HQH2 subject to .

y(0-x;) >1, i=1,....n

- 28 1
B . minimize —H9H2 subject to

ll\, \ \‘\oo | y2(9 $2+90>>1 v=1,...,n




Support vector machine

* Several desirable properties

- maximizes the margin on the training set (X good
generalization)

- the solution is unique and sparse ( & good generalization)

°*But...

- the solution is sensitive to outliers, labeling errors, as they
may drastically change the resulting max-margin boundary

- if the training set is not linearly separable, there’s no
solution!



Support vector machine

* Relaxed quadratic optimization problem

1
minimize 5 1612

v; (0 - z; + 0p)
&

penalty for constraint violation
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slack variables
permit us to violate
some of the margin
constraints



Support vector machine

* Relaxed quadratic optimization problem

penalty for constraint violation

1
minimize §HQH2 + CZ& subject to
yi(0 - z; +6p) > 1—57,7 =1,...,n
gi > 07 L = y ey T

slack variables

large C' = few (if any) violations permit us to violate

some of the margin

small C' = many violations constraints



Support vector machine

* Relaxed quadratic optimization problem

penalty for constraint violation

T ST
minimize §HQH + CZ@ subject to
il - zi +00) > 1—&, =1,...,n
& > 0, i=1In,n
slack variables
large C' = few (if any) violations ~ permit us to violate
some of the margin
small C' = many violations constraints

we can still interpret the margin as 1/||0%|



Support vector machine

* Relaxed quadratic optimization problem

1
minimize 5 16]|%

y: (0 - x; + 6p)

_|_

AVARAV,

C Z &, subject to
i=1

1—fi, izl,...,n

0, »=1,...,n



Support vectors and slack

® The solution now has three types of support vectors

1 n
minimize §HQH2 + C;fz subject to

vi0 -z +6y) > 1-&, i=1,...,n
& =2 0, i=1,...,n
,I’ E — () constraint is tight
,"/ >t~ ¥ but there’s no slack




Support vectors and slack

® The solution now has three types of support vectors

1 n
minimize §HQH2 + C;fz subject to

Z 1—6&, z:1,...,n
> 0, 1=1,....n
E' - 0 constraint is tight
(2 but there’s no slack

o‘j’\°° 5 c (O 1) non-zero slack but the
| } )

point is not misclassified




Support vectors and slack

® The solution now has three types of support vectors

minimize —H9H2 + C’Zfz subject to
1=1

5" - constraint is tight
¢ but there’s no slack

f ( ) non-zero slack but the
t point is not misclassified

1 non-zero slack and the
point is misclassified




Examples
* C=100




Examples
* C=10




Examples
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Examples
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Examples

* C potentially affects the solution even in the separable

case

*C=1
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Examples

* C potentially affects the solution even in the separable

case
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Examples

* C potentially affects the solution even in the separable

case
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Non-linear dataset




kernel

L

1’4

Decision surface




Different Types of kernel

Polynomial
Sigmoid

RBF 1 |
K(X1,X2) = (X11.X241)

I<(x1,22) = tanh(azly+ z)
—||(21—22)] |~
K (EL#2) = € 02




Polynomial Kernel

c K(X1,X2) = ¢p(X1).p(X2)

X1l . x2=

X1
X2

X1

- 5

X12
X1.X?2

X2]

X1.X2

X922




