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Naive Bayes in a Nutshell

Bayes rule:

P(Y = P(Xq...XnlY =
P(Y:yk|X1Xn)= ( yk) ( 1 nl yk)

> P(Y = y))P(X1... XnlY =y5)

Assuming conditional independence among X/'s:
PY = yg) I1; P(XG|Y = yg)
> P(Y = y) [I; P(XGY = y5)

P(Y = yi|X1... Xn) =

So, classification rule for x»v=<Xx,, .., X >Is:
Y%  arg max P(Y = yp) [ | P(XTY)Y = yg)
k :
1



What if we have continuous X;?

Eg., image classification: X. is real-valued it" pixel
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What if we have continuous X;?

Eg., image classification: X is real-valued it pixel

Naive Bayes requires P(X;| Y=y,), but X; is real (continuous)

P(Y = yp) I1; P(X;|Y = yg)

( Ykl X1 ) > P(Y = y;) I; P(XG|Y = y;)

Common approach: assume P(X; | Y=y,) follows a Normal
(Gaussian) distribution



What if we have continuous X;?

Eg., image classification: X is real-valued it pixel

Naive Bayes requires P(X;| Y=y,), but X; is real (continuous)

P(Y = yp) I1; P(X;|Y = yg)

P(Y = X1...Xp) =
( Ykl X1 ) > P(Y = y;) I; P(XG|Y = y;)

Common approach: assume P(X; | Y=y,) follows a Normal
(Gaussian) distribution

Y still follows Bernouli Distribution


l
Y still follows Bernouli Distribution


a u S S i a n Normal distribution with mean 0, standard deviation 1
< ; 04 T T T T

Distribution

(also called “Normal”) .|

p(X) is a probability T
density function, whose p(x) = 1 Pk
integral (not sum) is 1 vV 2mo?

The probability that X will fall into the interval
(a,b) is given by
J '(b p(a)dx
e Expected, or mean value of X, F[X], is
ElX]=pn
e Variance of X is
Var(X) = o*
e Standard deviation of X, oy, is

oy — 0
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e Expected, or mean value of X, F[X], is
N (u, 0?) BIX] = s
e Variance of X is
Var(X) = o?
e Standard deviation of X, oy, is

ox — 0



What if we have continuous X;?

Gaussian Nailve Bayes (GNB): assume

e (G-

5 € ik
\/ 2o,

Sometimes assume variance

* is independent of Y (i.e., o),
 or independent of X. (i.e., g))
* or both (i.e., 0)

p(X;=z|Y = y) =




Gaussian Naive Bayes Algorithm — continuous X.
(but still discrete Y)

* Train Naive Bayes (examples)
for each value y,
estimate* m, = P(Y = y;.)
for each attribute X, estimate P(Xi|Y = y)
* class conditional mean [, variance o;;.

 Classify (X"")

(2

Yk

Y% « argmax Ty HN(XZ-”B"”; Liks Oik)

" probabilities must sum to 1, so need estimate only n-1 parameters...



Estimating Parameters: Y discrete, X. continuous

Maximum likelihood estimates:  jth training

example
1
Z X16(Y7 =
Hi k,\zj S(YI = yp,) Z ( "
ith feﬂ'fu"e kth class 50)=1 if (Yizy,)
=11 =Yk
else O
N zw ZORICEEETY

z] 5(Y] — yk)
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Estimating Parameters: Y discrete, X. continuous

Maximum likelihood estimates:  jth training

example
1
7 § X/ 5(YI =
~ k\zj O(YT = yp) ( k)
ith feaTur kth class

0()=1if (Yizy,)
else O

1 n
Mean = - > " x;
Where:
* nisthe number of data points in the class.

* x; represents the feature values for each data point within that class.
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Estimating Parameters: Y discrete, X. continuous

Maximum likelihood estimates:  jth training

example
1 . .
Wik, = —— Y X/5(Y7 = yy)
//////' k\\\§:j5(}(7-—'yk) ]
ith feaTur‘e kth class

30=1 if (Yizyy)

class_1_data = np.array([

class_2_data = np.array([

H CalrAitlat+no ha A~rlace_r~randa+-Aanal n"Aane AT Fan wa Y
s Ldlud_ch the uldaa—uuHJiL_qu_ means for feature X

mean_class_1_X np.mean(class_1_data)

mean_class_2_X np.mean(class_2_data)
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How many parameters must we estimate for Gaussian
Naive Bayes if Y has k possible values, X=<X1, ... Xn>?

1 1 ﬂU_l‘z'k)2

p(Xz:.f'Y = yk) = ——F € 2 ik

\/ 27raz.2k



How many parameters must we estimate for Gaussian
Naive Bayes if Y has k possible values, X=<X1, ... Xn>?

1 _L(E ik

2 e 2 Uik
\/ 27raz.k

p(X;=z|Y =y) =

Mean (1) and Variance (0”2) for Each Feature for Each Class: For each class, you need to
estimate the mean (1) and variance (0"2) for each of the n features. So, for each class, there

are 2n parameters to estimate (n means and n variances).



How many parameters must we estimate for Gaussian
Naive Bayes if Y has k possible values, X=<X1, ... Xn>?

| ) 1 —§(Shiky2
X Y Tik
p( i Yk \/27raz.2k e

Mean (1) and Variance (0”2) for Each Feature for Each Class: For each class, you need to
estimate the mean (1) and variance (0"2) for each of the n features. So, for each class, there

are 2n parameters to estimate (n means and n variances).

Class Prior Probability (P(Y =y)): You need to estimate one parameter for each class. So,

there are k parameters to estimate.

Total Parameters = k (Class Priors) + k * 2n (Means and Variances)



a u S S i a n Normal distribution with mean 0, standard deviation 1
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Distribution M B L7 (%
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p(X) is a probability D g X
density function, whose Zﬁ,) _ 1y
integral (not sum) is 1 V2mo?

The probability that X will fall into the interval

2 19 o1V r
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e Expected, or mean value of X, F[X], is

EX]|=pu
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Multivariate 44 N 77
Normal /11, Z

Distribution

Univariate vs Bivariate


ksolaima
Sticky Note
	•	Variance is a measure of the spread or dispersion of a single variable (univariate).
	•	It quantifies how much individual data points deviate from the mean (average) of that variable.

Covariance is a measure of the linear relationship between two variables
It quantifies how changes in one variable correspond to changes in another variable.
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p(x) = —e 2\ 0

P = o
The probability that X will fall into the interval
(a,b) is given by

p(il?; Hs Z’) - (27T)d/1|2|1/2 eXp (—%(27 o l'l’)TZ_l(x o M)) '
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Estimating Parameters: Y discrete, X. continuous

Maximum likelihood estimates:  jth training

example
1
Z X35 Y7 =
ith fe(]'rur'e kth CIC(SS

0()=1 if (Yizy,)
else O

T — Ag) 20 (Y7 = y)

> 0 (Y =yp)

Calculate Co-variance instead , 2


l
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GDA and Logistic Regression

if p(x|y) is multivariate gaussian (with shared X), then p(y|x)
necessarily follows a logistic function.

Opposite is not true

Hence GDA makes stronger assumption

GDA makes stronger modeling assumptions, and is more data
efficient when the modeling assumptions are correct or at
least approximately correct.

Logistic regression makes weaker assumptions, and is
significantly more robust to deviations from modeling
assumptions.

In practice, logistic regression is used more often than GDA.

1
1 + exp(—0Tx)

p(y — 1|£l7, ¢7 27 Mo, /1’1) —
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Sticky Note
• For each Xi , P(Xi |Y = yk) is a Gaussian distribution of the form N(µik,σi)

σik 
• is independent of Y (i.e., σi ), 
• or independent of Xi (i.e., σk)
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