Lecture 8 Naive Bayes

KMA Solaiman

Fall 2023

Partially Adapted from
Tom Mitchell

Naïve Bayes in a Nutshell

Bayes rule:

$$
P\left(Y=y_{k} \mid X_{1} \ldots X_{n}\right)=\frac{P\left(Y=y_{k}\right) P\left(X_{1} \ldots X_{n} \mid Y=y_{k}\right)}{\sum_{j} P\left(Y=y_{j}\right) P\left(X_{1} \ldots X_{n} \mid Y=y_{j}\right)}
$$

Assuming conditional independence among X_{i} 's:

$$
P\left(Y=y_{k} \mid X_{1} \ldots X_{n}\right)=\frac{P\left(Y=y_{k}\right) \Pi_{i} P\left(X_{i} \mid Y=y_{k}\right)}{\sum_{j} P\left(Y=y_{j}\right) \Pi_{i} P\left(X_{i} \mid Y=y_{j}\right)}
$$

So, classification rule for $X^{\text {new }}=\left\langle X_{1}, \ldots, X_{n}\right\rangle$ is:

$$
Y^{\text {new }} \leftarrow \arg \max _{y_{k}} P\left(Y=y_{k}\right) \prod_{i} P\left(X_{i}^{\text {new }} \mid Y=y_{k}\right)
$$

What if we have continuous X_{i} ?

Eg., image classification: X_{i} is real-valued $\mathrm{i}^{\text {th }}$ pixel

What if we have continuous X_{i} ?

Eg., image classification: X_{i} is real-valued $\mathrm{i}^{\text {th }}$ pixel

Naïve Bayes requires $P\left(X_{i} \mid Y=y_{k}\right)$, but X_{i} is real (continuous)

$$
P\left(Y=y_{k} \mid X_{1} \ldots X_{n}\right)=\frac{P\left(Y=y_{k}\right) \prod_{i} P\left(X_{i} \mid Y=y_{k}\right)}{\sum_{j} P\left(Y=y_{j}\right) \prod_{i} P\left(X_{i} \mid Y=y_{j}\right)}
$$

Common approach: assume $P\left(X_{i} \mid Y=y_{k}\right)$ follows a Normal (Gaussian) distribution

What if we have continuous X_{i} ?

Eg., image classification: X_{i} is real-valued $\mathrm{i}^{\text {th }}$ pixel

Naïve Bayes requires $P\left(X_{i} \mid Y=y_{k}\right)$, but X_{i} is real (continuous)

$$
P\left(Y=y_{k} \mid X_{1} \ldots X_{n}\right)=\frac{P\left(Y=y_{k}\right) \prod_{i} P\left(X_{i} \mid Y=y_{k}\right)}{\sum_{j} P\left(Y=y_{j}\right) \prod_{i} P\left(X_{i} \mid Y=y_{j}\right)}
$$

Common approach: assume $P\left(X_{i} \mid Y=y_{k}\right)$ follows a Normal (Gaussian) distribution

Gaussian
Distribution
(also called "Normal")
$\mathrm{p}(\mathrm{x})$ is a probability
 density function, whose integral (not sum) is 1

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

The probability that X will fall into the interval
(a, b) is given by

$$
\int_{a}^{b} p(x) d x
$$

- Expected, or mean value of $X, E[X]$, is

$$
E[X]=\mu
$$

- Variance of X is

$$
\operatorname{Var}(X)=\sigma^{2}
$$

- Standard deviation of X, σ_{X}, is

$$
\sigma_{X}=\sigma
$$

Gaussian

Distribution
(also called "Normal")
$p(x)$ is a probability density function, whose integral (not sum) is 1

The probability that X will fall into the interval
(a, b) is given by

$$
\int_{a}^{b} p(x) d x
$$

$N\left(\mu, \sigma^{2}\right)$

- Expected, or mean value of $X, E[X]$, is

$$
E[X]=\mu
$$

- Variance of X is

$$
\operatorname{Var}(X)=\sigma^{2}
$$

- Standard deviation of X, σ_{X}, is

$$
\sigma_{X}=\sigma
$$

What if we have continuous X_{i} ?

Gaussian Naïve Bayes (GNB): assume

$$
p\left(X_{i}=x \mid Y=y_{k}\right)=\frac{1}{\sqrt{2 \pi \sigma_{i k}^{2}}} e^{-\frac{1}{2}\left(\frac{x-\mu_{i k}}{\sigma_{i k}}\right)^{2}}
$$

Sometimes assume variance

- is independent of Y (i.e., σ_{i}),
- or independent of X_{i} (i.e., σ_{k})
- or both (i.e., σ)

Gaussian Naïve Bayes Algorithm - continuous X

 (but still discrete Y)- Train Naïve Bayes (examples) for each value y_{k}
estimate* $\pi_{k} \equiv P\left(Y=y_{k}\right)$
for each attribute X_{i} estimate $P\left(X_{i} \mid Y=y_{k}\right)$
- class conditional mean $\mu_{i k}$, variance $\sigma_{i k}$
- Classify ($X^{\text {new }}$)

$$
\begin{aligned}
& Y^{\text {new }} \leftarrow \arg \max _{y_{k}} P\left(Y=y_{k}\right) \prod_{i} P\left(X_{i}^{\text {new }} \mid Y=y_{k}\right) \\
& Y^{\text {new }} \leftarrow \arg \max _{y_{k}} \pi_{k} \prod_{i} \mathcal{N}\left(X_{i}^{\text {new }} ; \mu_{i k}, \sigma_{i k}\right)
\end{aligned}
$$

* probabilities must sum to 1 , so need estimate only $n-1$ parameters...

Estimating Parameters: Y discrete, X_{i} continuous

Maximum likelihood estimates:
ith feature
kth class

$$
\widehat{\sigma}_{i k}^{2}=\frac{1}{\sum_{j} \delta\left(Y^{j}=y_{k}\right)} \sum_{j}\left(X_{i}^{j}-\widehat{\mu}_{i k}\right)^{2} \delta\left(Y^{j}=y_{k}\right)
$$

Estimating Parameters: Y discrete, X_{i} continuous

Maximum likelihood estimates:

Mean $=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
Where:

- n is the number of data points in the class.
- x_{i} represents the feature values for each data point within that class.

Estimating Parameters: Y discrete, X_{i} continuous

Maximum likelihood estimates:
jth training example
ith feature kth class

$$
\delta()=1 \text { if }\left(y^{j}=y_{k}\right)
$$

```
# Sample data for two classes (continuous feature X)
class_1_data = np.array([2.1, 3.5, 1.2, 4.8, 2.9])
class_2_data = np.array([6.3, 5.7, 7.2, 5.0, 6.8])
# Calculate the class-conditional means for feature X
mean_class_1_X = np.mean(class_1_data)
mean_class_2_X = np.mean(class_2_data)
```

How many parameters must we estimate for Gaussian Naïve Bayes if Y has k possible values, $\mathrm{X}=<\mathrm{X} 1, \ldots \mathrm{Xn}>$?

$$
p\left(X_{i}=x \mid Y=y_{k}\right)=\frac{1}{\sqrt{2 \pi \sigma_{i k}^{2}}} e^{-\frac{1}{2}\left(\frac{x-\mu_{i k}}{\sigma_{i k}}\right)^{2}}
$$

How many parameters must we estimate for Gaussian Naïve Bayes if Y has k possible values, $\mathrm{X}=<\mathrm{X} 1, \ldots \mathrm{Xn}>$?

$$
p\left(X_{i}=x \mid Y=y_{k}\right)=\frac{1}{\sqrt{2 \pi \sigma_{i k}^{2}}} e^{-\frac{1}{2}\left(\frac{x-\mu_{i k}}{\sigma_{i k}}\right)^{2}}
$$

Mean (μ) and Variance ($\sigma^{\wedge} \mathbf{2}$) for Each Feature for Each Class: For each class, you need to estimate the mean (μ) and variance ($\sigma^{\wedge} 2$) for each of the n features. So, for each class, there are $2 n$ parameters to estimate (n means and n variances).

How many parameters must we estimate for Gaussian Naïve Bayes if Y has k possible values, $\mathrm{X}=<\mathrm{X} 1, \ldots \mathrm{Xn}>$?

$$
p\left(X_{i}=x \mid Y=y_{k}\right)=\frac{1}{\sqrt{2 \pi \sigma_{i k}^{2}}} e^{-\frac{1}{2}\left(\frac{x-\mu_{i k}}{\sigma_{i k}}\right)^{2}}
$$

Mean (μ) and Variance ($\sigma^{\wedge} \mathbf{2}$) for Each Feature for Each Class: For each class, you need to estimate the mean (μ) and variance ($\sigma^{\wedge} 2$) for each of the n features. So, for each class, there are 2 n parameters to estimate (n means and n variances).
 there are k parameters to estimate.

$$
\text { Total Parameters = k (Class Priors) }+\mathrm{k} \text { * } 2 n \text { (Means and Variances) }
$$

Gaussian
 Distribution

(also called "Normal")
$\mathrm{p}(\mathrm{x})$ is a probability density function, whose integral (not sum) is 1

The probability that X will fall into the interval $N\left(\mu, \sigma^{2}\right)$
(a, b) is given by

$$
\int_{a}^{b} p(x) d x
$$

- Expected, or mean value of $X, E[X]$, is

$$
E[X]=\mu
$$

Multivariate
 Normal
 Distribution

Univariate vs Bivariate

Multivariate

 Normal Distribution

The probability that X will fall into the interval (a, b) is given by

$$
p(x ; \mu, \Sigma)=\frac{1}{(2 \pi)^{d / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)
$$

Eta $=\mathrm{I}$
$\mathrm{Eta}=0.6 \mathrm{I}$
$\mathrm{Eta}=2 \mathrm{I}$

as \sum becomes larger, the Gautso
and as it becomes smaller, the disstritbution becomes more "compressed."

Estimating Parameters: Y discrete, X_{i} continuous

Maximum likelihood estimates:

$\hat{\sigma}_{i k}^{2}=\frac{1}{\sum_{j} \delta\left(Y^{j} \leqslant y_{k}\right)} \sum_{j}\left(X_{i}^{j}-\hat{\mu}_{i k}\right)^{2} \delta\left(Y^{j}=y_{k}\right)$

Calculate Co-variance instead , Σ

GDA and Logistic Regression

- if $p(x \mid y)$ is multivariate gaussian (with shared Σ), then $p(y \mid x)$ necessarily follows a logistic function.
- Opposite is not true
- Hence GDA makes stronger assumption
- GDA makes stronger modeling assumptions, and is more data efficient when the modeling assumptions are correct or at least approximately correct.
- Logistic regression makes weaker assumptions, and is significantly more robust to deviations from modeling assumptions.
- In practice, logistic regression is used more often than GDA.

$$
p\left(y=1 \mid x ; \phi, \Sigma, \mu_{0}, \mu_{1}\right)=\frac{1}{1+\exp \left(-\theta^{T} x\right)}
$$

