Lecture 8 Naive Bayes

KMA Solaiman Fall 2023

Partially Adapted from Tom Mitchell

Naïve Bayes in a Nutshell

Bayes rule:

$$P(Y = y_k | X_1 \dots X_n) = \frac{P(Y = y_k) P(X_1 \dots X_n | Y = y_k)}{\sum_j P(Y = y_j) P(X_1 \dots X_n | Y = y_j)}$$

Assuming conditional independence among X_i's: $P(Y = y_k | X_1 \dots X_n) = \frac{P(Y = y_k) \prod_i P(X_i | Y = y_k)}{\sum_j P(Y = y_j) \prod_i P(X_i | Y = y_j)}$

So, classification rule for $X^{new} = \langle X_1, ..., X_n \rangle$ is: $Y^{new} \leftarrow \arg \max_{y_k} P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$

What if we have continuous X_i ?

Eg., image classification: X_i is real-valued ith pixel

What if we have continuous X_i ?

Eg., image classification: X_i is real-valued ith pixel

Naïve Bayes requires $P(X_i | Y=y_k)$, but X_i is real (continuous)

$$P(Y = y_k | X_1 \dots X_n) = \frac{P(Y = y_k) \prod_i P(X_i | Y = y_k)}{\sum_j P(Y = y_j) \prod_i P(X_i | Y = y_j)}$$

Common approach: assume $P(X_i | Y=y_k)$ follows a Normal (Gaussian) distribution

What if we have continuous X_i ?

Eg., image classification: X_i is real-valued ith pixel

Naïve Bayes requires $P(X_i | Y=y_k)$, but X_i is real (continuous)

$$P(Y = y_k | X_1 \dots X_n) = \frac{P(Y = y_k) \prod_i P(X_i | Y = y_k)}{\sum_j P(Y = y_j) \prod_i P(X_i | Y = y_j)}$$

Common approach: assume $P(X_i | Y=y_k)$ follows a Normal (Gaussian) distribution

Y still follows Bernouli Distribution

Gaussian Distribution (also called "Normal")

p(x) is a *probability density function*, whose integral (not sum) is 1

The probability that X will fall into the interval (a, b) is given by

$$\int_a^b p(x) dx$$

- Expected, or mean value of X, E[X], is $E[X] = \mu$
- Variance of X is
- $Var(X) = \sigma^2$
- Standard deviation of X, σ_X , is

$$\sigma_X = \sigma$$

Gaussian Distribution (also called "Normal")

p(x) is a *probability density function*, whose integral (not sum) is 1

The probability that X will fall into the interval (a, b) is given by

$$\int_a^b p(x) dx$$

- Expected, or mean value of $X,\; E[X],$ is $E[X] = \mu$
- Variance of X is
- $Var(X) = \sigma^2$
- Standard deviation of X, σ_X , is

$$\sigma_X = \sigma$$

 $N(\mu, \sigma^2)$

What if we have continuous X_i ? Gaussian Naïve Bayes (GNB): assume

$$p(X_i = x | Y = y_k) = \frac{1}{\sqrt{2\pi\sigma_{ik}^2}} e^{-\frac{1}{2}(\frac{x-\mu_{ik}}{\sigma_{ik}})^2}$$

Sometimes assume variance

- is independent of Y (i.e., σ_i),
- or independent of X_i (i.e., σ_k)
- or both (i.e., σ)

Gaussian Naïve Bayes Algorithm – continuous X_i (but still discrete Y)

Train Naïve Bayes (examples)
 for each value y_k

estimate* $\pi_k \equiv P(Y = y_k)$ for each attribute X_i estimate $P(X_i|Y = y_k)$

- class conditional mean μ_{ik} , variance σ_{ik}

• Classify (X^{new})

$$Y^{new} \leftarrow \arg \max_{y_k} P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$
$$Y^{new} \leftarrow \arg \max_{y_k} \pi_k \prod_i \mathcal{N}(X_i^{new}; \mu_{ik}, \sigma_{ik})$$

^f probabilities must sum to 1, so need estimate only n-1 parameters...

$$\widehat{\sigma}_{ik}^2 = \frac{1}{\sum_j \delta(Y^j = y_k)} \sum_j (X_i^j - \widehat{\mu}_{ik})^2 \delta(Y^j = y_k)$$

$$ext{Mean} = rac{1}{n} \sum_{i=1}^n x_i$$
 Where:

- *n* is the number of data points in the class.
- * x_i represents the feature values for each data point within that class.

How many parameters must we estimate for Gaussian Naïve Bayes if Y has k possible values, X=<X1, ... Xn>? $p(X_i = x|Y = y_k) = \frac{1}{\sqrt{2\pi\sigma_{ik}^2}} e^{-\frac{1}{2}(\frac{x-\mu_{ik}}{\sigma_{ik}})^2}$ How many parameters must we estimate for Gaussian Naïve Bayes if Y has k possible values, X=<X1, ... Xn>? $p(X_i = x|Y = y_k) = \frac{1}{\sqrt{2\pi\sigma_{ik}^2}} e^{-\frac{1}{2}(\frac{x-\mu_{ik}}{\sigma_{ik}})^2}$

Mean (μ) and Variance (σ^2) for Each Feature for Each Class: For each class, you need to estimate the mean (μ) and variance (σ^2) for each of the n features. So, for each class, there are 2n parameters to estimate (n means and n variances).

How many parameters must we estimate for Gaussian Naïve Bayes if Y has k possible values, X=<X1, ... Xn>? $p(X_i = x|Y = y_k) = \frac{1}{\sqrt{2\pi\sigma_{ik}^2}} e^{-\frac{1}{2}(\frac{x-\mu_{ik}}{\sigma_{ik}})^2}$

Mean (μ) and Variance (σ^2) for Each Feature for Each Class: For each class, you need to estimate the mean (μ) and variance (σ^2) for each of the n features. So, for each class, there are 2n parameters to estimate (n means and n variances).

Class Prior Probability (P(Y = y)): You need to estimate one parameter for each class. So, there are k parameters to estimate.

Total Parameters = k (Class Priors) + k * 2n (Means and Variances)

Gaussian Distribution (also called "Normal")

p(x) is a *probability density function*, whose integral (not sum) is 1

$$N(\mu,\sigma^2)$$

The probability that X will fall into the interval (a, b) is given by $\int_a^b p(x) dx$

• Expected, or mean value of
$$X, E[X]$$
, is

 $E[X] = \mu$

Multivariate Normal Distribution

"
$$\mathcal{N}(\mu, \Sigma)$$
"

Multivariate Normal Distribution

The probability that X will fall into the interval (a, b) is given by

$$p(x;\mu,\Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right).$$

- I V

$$\operatorname{Cov}(X) = \Sigma.$$

Calculate Co-variance instead $,\Sigma$

GDA and Logistic Regression

- if p(x|y) is multivariate gaussian (with shared Σ), then p(y|x) necessarily follows a logistic function.
- Opposite is not true
- Hence GDA makes stronger assumption
- GDA makes stronger modeling assumptions, and is more data efficient when the **modeling assumptions are correct or at** least approximately correct.
- Logistic regression makes weaker assumptions, and is significantly more robust to deviations from modeling assumptions.
- In practice, logistic regression is used more often than GDA.

$$p(y = 1 | x; \phi, \Sigma, \mu_0, \mu_1) = \frac{1}{1 + \exp(-\theta^T x)}$$