Machine Learning

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

Today:

- Bayes Classifiers
- Conditional Independence
- Naïve Bayes

Two Principles for Estimating Parameters

• Maximum Likelihood Estimate (MLE): choose θ that maximizes probability of observed data \mathcal{D}

$$\widehat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

 Maximum a Posteriori (MAP) estimate: choose θ that is most probable given prior probability and the data

$$\widehat{\theta} = \arg\max_{\theta} P(\theta \mid \mathcal{D})$$

$$= \arg\max_{\theta} = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

Maximum Likelihood Estimate

X=1 X=0 $P(X=1) = \theta$ $P(X=0) = 1-\theta$ (Bernoulli)

 \bullet Each flip yields boolean value for X

$$X \sim \text{Bernoulli: } P(X) = \theta^X (1 - \theta)^{(1 - X)}$$

• Data set D of independent, identically distributed (iid) flips produces α_1 ones, α_0 zeros

$$P(D|\theta) = P(\alpha_1, \alpha_0|\theta) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}$$

$$\hat{\theta}^{MLE} = \arg\max_{\theta} P(D|\theta) = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

Maximum A Posteriori (MAP) Estimate

• Data set D of independent, identically distributed (iid) flips produces α_1 ones, α_0 zeros

$$P(D|\theta) = P(\alpha_1, \alpha_0|\theta) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}$$

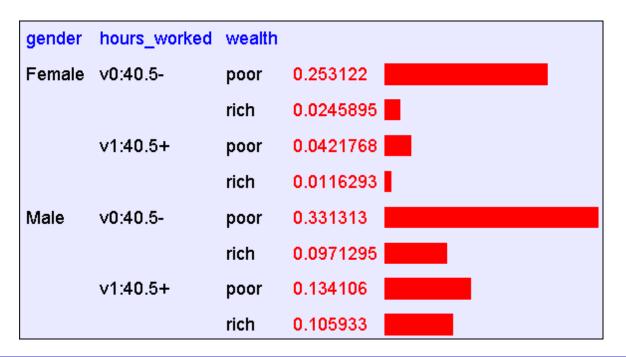
- Assume prior $P(\theta) = Beta(\beta_1, \beta_0) = \frac{1}{B(\beta_1, \beta_0)} \theta^{\beta_1 1} (1 \theta)^{\beta_0 1}$
- Then

$$\hat{\theta}^{MAP} = \arg \max_{\theta} P(D|\theta)P(\theta) = \frac{\alpha_1 + \beta_1 - 1}{(\alpha_1 + \beta_1 - 1) + (\alpha_0 + \beta_0 - 1)}$$

(like MLE, but hallucinating $\beta_1 - 1$ additional heads, $\beta_0 - 1$ additional tails)

Let's learn classifiers by learning P(Y|X)

Consider Y=Wealth, X=<Gender, HoursWorked>



Gender	HrsWorked	P(rich G,HW)	P(poor G,HW)
F	<40.5	.09	.91
F	>40.5	.21	.79
М	<40.5	.23	.77
M	>40.5	.38	.62

How many parameters must we estimate?

Suppose $X = \langle X_1, ..., X_n \rangle$ where X_i and Y are boolean RV's

Gender	HrsWorked	P(rich G,HW)	P(poor G,HW)
F	<40.5	.09	.91
F	>40.5	.21	.79
М	<40.5	.23	.77
М	>40.5	.38	.62

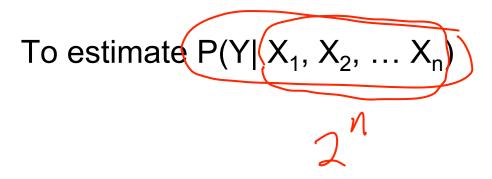
To estimate $P(Y|X_1, X_2, ... X_n)$

If we have 30 boolean X_i 's: $P(Y | X_1, X_2, ..., X_{30})$

How many parameters must we estimate?

Suppose $X = \langle X_1, ..., X_n \rangle$ where X_i and Y are boolean RV's

٠ _					
١	Gender	HrsWorked	P(rich G,HW)	P(poor G,HW)	
']	F	<40.5	.09	.91	P
-	F	>40.5	.21	.79	
	М	<40.5	.23	. \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	М	>40.5	.38	.62	,



If we have 30 X_i's instead of 2?

Bayes Rule

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

Which is shorthand for:

$$(\forall i, j) P(Y = y_i | X = x_j) = \frac{P(X = x_j | Y = y_i) P(Y = y_i)}{P(X = x_j)}$$

Equivalently:

$$(\forall i, j) P(Y = y_i | X = x_j) = \frac{P(X = x_j | Y = y_i) P(Y = y_i)}{\sum_k P(X = x_j | Y = y_k) P(Y = y_k)}$$

Can we reduce params using Bayes Rule?

Suppose X =
$$<$$
X₁,... X_n>
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$
 where X_i and Y are boolean RV's

How many parameters to define $P(X_1, ..., X_n \mid Y)$?

How many parameters to define P(Y)?

Can we reduce params using Bayes Rule?

Suppose X =
$$$$
 where X_i and Y are boolean RV's $P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$

How many parameters to define $P(X_1, ..., X_n \mid Y)$?

$$P(X|Y=1)$$
 ---- 2^{n} - 1 $P(X|Y=0)$ ---- 2^{n} - 1

How many parameters to define P(Y)?

Can we reduce params using Bayes Rule?

Suppose
$$X = \langle X_1, ..., X_n \rangle$$

where X_i and Y are boolean RV's

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

Naïve Bayes

Naïve Bayes assumes

$$P(X_1 \dots X_n | Y) = \prod_i P(X_i | Y)$$

i.e., that X_i and X_j are conditionally independent given Y, for all i≠j

Conditional Independence

Definition: X is <u>conditionally independent</u> of Y given Z, if the probability distribution governing X is independent of the value of Y, given the value of Z

$$(\forall i, j, k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)$$

Which we often write

$$P(X|Y,Z) = P(X|Z)$$

E.g.,

P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

Given this assumption, then:

$$P(X_1, X_2|Y) =$$

Given this assumption, then:

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$

= $P(X_1|Y)P(X_2|Y)$

in general:
$$P(X_1...X_n|Y) = \prod_i P(X_i|Y)$$

Given this assumption, then:

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$
 Chain Rule
= $P(X_1|Y)P(X_2|Y)$

in general:
$$P(X_1...X_n|Y) = \prod_i P(X_i|Y)$$

Given this assumption, then:

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$
 Chain Rule
= $P(X_1|Y)P(X_2|Y)$

in general:
$$P(X_1...X_n|Y) = \prod_i P(X_i|Y)$$

How many parameters to describe $P(X_1...X_n|Y)$? P(Y)?

- Without conditional indep assumption?
- With conditional indep assumption?

Naïve Bayes uses assumption that the X_i are conditionally independent, given Y

Given this assumption, then:

$$P(X_1, X_2|Y) = P(X_1|X_2, Y)P(X_2|Y)$$
 Chain We $= P(X_1|Y)P(X_2|Y)$ Cond. Indep.

in general:
$$P(X_1...X_n|Y) = \prod_i P(X_i|Y)$$

How many parameters to describe $P(X_1...X_n|Y)$? P(Y)?

- Without conditional indep assumption? 2(21-1)+1
- With conditional indep assumption?

Naïve Bayes in a Nutshell

Bayes rule:

$$P(Y = y_k | X_1 ... X_n) = \frac{P(Y = y_k) P(X_1 ... X_n | Y = y_k)}{\sum_j P(Y = y_j) P(X_1 ... X_n | Y = y_j)}$$

Assuming conditional independence among X_i's:

$$P(Y = y_k | X_1 ... X_n) = \frac{P(Y = y_k) \prod_i P(X_i | Y = y_k)}{\sum_j P(Y = y_j) \prod_i P(X_i | Y = y_j)}$$

So, to pick most probable Y for $X^{new} = \langle X_1, ..., X_n \rangle$

$$Y^{new} \leftarrow \arg\max_{y_k} P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$

Naïve Bayes Algorithm – discrete X_i

Train Naïve Bayes (examples)

for each* value
$$y_k$$
 estimate $\pi_k \equiv P(Y=y_k)$ for each* value x_{ij} of each attribute X_i estimate $\theta_{ijk} \equiv P(X_i=x_{ij}|Y=y_k)$

• Classify (X^{new})

$$Y^{new} \leftarrow \arg\max_{y_k} \ P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$

 $Y^{new} \leftarrow \arg\max_{y_k} \ \pi_k \prod_i \theta_{ijk}$

^{*} probabilities must sum to 1, so need estimate only n-1 of these...

Estimating Parameters: Y, X_i discrete-valued

Maximum likelihood estimates (MLE's):

$$\hat{\pi}_k = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\}}{|D|}$$

$$\hat{\theta}_{ijk} = \hat{P}(X_i = x_{ij}|Y = y_k) = \frac{\#D\{X_i = x_{ij} \land Y = y_k\}}{\#D\{Y = y_k\}}$$

Number of items in dataset D for which $Y=y_k$

80, 8

- S=1 iff live in Squirrel Hill
- G=1 iff shop at SH Giant Eagle
- D=1 iff Drive to CMU
- M=1 iff Rachel Maddow fan

What probability parameters must we estimate?

80,8

- S=1 iff live in Squirrel Hill
- G=1 iff shop at SH Giant Eagle
- D=1 iff Drive to CMU
- M=1 iff Rachel Maddow fan

What probability parameters must we estimate?

$$P(S=1)$$
: $P(S=0)$:

$$P(D=1 | S=1) : P(D=0 | S=1) :$$

$$P(D=1 | S=0)$$
: $P(D=0 | S=0)$:

$$P(G=1 | S=1) : P(G=0 | S=1) :$$

$$P(G=1 | S=0)$$
: $P(G=0 | S=0)$:

$$P(M=1 | S=1) : P(M=0 | S=1) :$$

$$P(M=1 | S=0)$$
: $P(M=0 | S=0)$:

Example: Live in Sq Hill? P(S|G,D,B)

- S=1 iff live in Squirrel Hill
 D=1 iff Drive or carpool to CMU
 - G=1 iff shop at SH Giant Eagle B=1 iff Birthday is before July 1

What probability parameters must we estimate?

Example: Live in Sq Hill? P(S|G,D,E)

- S=1 iff live in Squirrel Hill
- G=1 iff shop at SH Giant Eagle
- D=1 iff Drive or Carpool to CMU
- B=1 iff Birthday is before July 1

```
\begin{array}{lll} P(S=1): & P(S=0): \\ P(D=1 \mid S=1): & P(D=0 \mid S=1): \\ P(D=1 \mid S=0): & P(D=0 \mid S=0): \\ P(G=1 \mid S=1): & P(G=0 \mid S=1): \\ P(G=1 \mid S=0): & P(B=0 \mid S=1): \\ P(B=1 \mid S=0): & P(B=0 \mid S=0): \\ \end{array}
```

Naïve Bayes: Subtlety #1

Often the X_i are not really conditionally independent

- We use Naïve Bayes in many cases anyway, and it often works pretty well
 - often the right classification, even when not the right probability (see [Domingos&Pazzani, 1996])
- What is effect on estimated P(Y|X)?
 - Extreme case: what if we add two copies: $X_i = X_k$

Extreme case: what if we add two copies: $X_i = X_k$

Extreme case: what if we add two copies: $X_i = X_k$

$$P(Y=y|X) \propto P(Y=y) \sqrt{1.1} P(X_1=x|Y=y)$$

Naïve Bayes: Subtlety #2

If unlucky, our MLE estimate for $P(X_i \mid Y)$ might be zero. (for example, $X_i = birthdate$. $X_i = Jan_25_1992$)

Why worry about just one parameter out of many?

What can be done to address this?

Naïve Bayes: Subtlety #2

If unlucky, our MLE estimate for $P(X_i \mid Y)$ might be zero. (e.g., X_i = Birthday_Is_January_30_1992)

Why worry about just one parameter out of many?

What can be done to address this?

Estimating Parameters

• Maximum Likelihood Estimate (MLE): choose θ that maximizes probability of observed data \mathcal{D}

$$\widehat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

 Maximum a Posteriori (MAP) estimate: choose θ that is most probable given prior probability and the data

$$\widehat{\theta} = \arg\max_{\theta} P(\theta \mid \mathcal{D})$$

$$= \arg\max_{\theta} = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

Estimating Parameters: Y, X_i discrete-valued

Maximum likelihood estimates:

$$\hat{\pi}_k = \hat{P}(Y = y_k) = \frac{\#D\{Y = y_k\}}{|D|}$$

$$\hat{\theta}_{ijk} = \hat{P}(X_i = x_j | Y = y_k) = \frac{\#D\{X_i = x_j \land Y = y_k\}}{\#D\{Y = y_k\}}$$

MAP estimates (Beta, Dirichlet priors):

$$\hat{\pi}_k = \hat{P}(Y=y_k) = \frac{\#D\{Y=y_k\} + (\beta_k-1)}{|D| + \sum_m (\beta_m-1)} \qquad \text{ ``imaginary'' examples'}$$

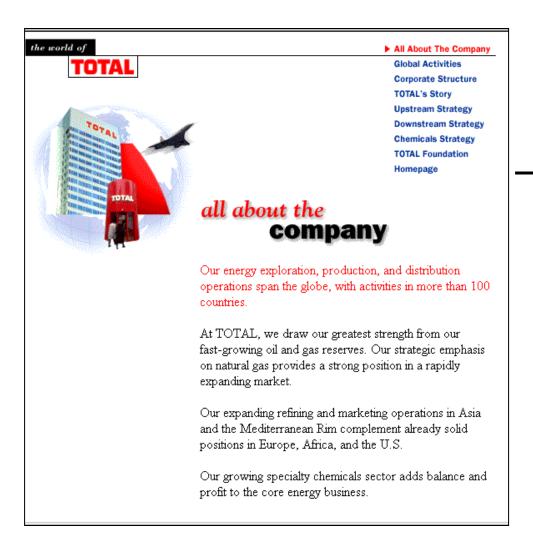
$$\hat{\theta}_{ijk} = \hat{P}(X_i=x_j|Y=y_k) = \frac{\#D\{X_i=x_j \land Y=y_k\} + (\beta_k-1)}{\#D\{Y=y_k\} + \sum_m (\beta_m-1)}$$

Learning to classify text documents

- Classify which emails are spam?
- Classify which emails promise an attachment?
- Classify which web pages are student home pages?

How shall we represent text documents for Naïve Bayes?

Baseline: Bag of Words Approach



aardvark about all Africa 0 apple 0 anxious gas oil . . . Zaire 0

Learning to classify document: P(Y|X) the "Bag of Words" model

- Y discrete valued. e.g., Spam or not
- $X = \langle X_1, X_2, ... X_n \rangle = document$
- X_i is a random variable describing the word at position i in the document
- possible values for X_i: any word w_k in English
- Document = bag of words: the vector of counts for all w_k's
 - like #heads, #tails, but we have many more than 2 values
 - assume word probabilities are position independent (i.i.d. rolls of a 50,000-sided die)

Naïve Bayes Algorithm – discrete X_i

Train Naïve Bayes (examples)

for each value
$$y_k$$

estimate
$$\pi_k \equiv P(Y = y_k)$$

for each value x_i of each attribute X_i

estimate
$$\theta_{ijk} \equiv P(X_i = x_j | Y = y_k)$$

prob that word x_j appears in position i, given $Y=y_k$

• Classify (X^{new})

$$Y^{new} \leftarrow \arg\max_{y_k} \ P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$

 $Y^{new} \leftarrow \arg\max_{y_k} \ \pi_k \prod_i \theta_{ijk}$

Additional assumption: word probabilities are position independent $heta_{ijk} = heta_{mjk} \;\; ext{for all} \; i,m$