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Revisiting Linear RegressionVisual version of linear regression

Let h✓(x) =
Pd

j=0 ✓jxj want to choose ✓ so that h✓(x) ⇡ y . One
popular idea called least squares

J(✓) =
1

2

nX

i=1

⇣
h✓(x

(i))� y (i)
⌘2

.

Choose
✓ = argmin

✓
J(✓).

Minimize
for !



Revisiting Logistic Regression
Logistic Regression: Link Functions

Given a training set {(x (i), y (i)) for i = 1, . . . , n} let y (i) 2 {0, 1}.
Want h✓(x) 2 [0, 1]. Let’s pick a smooth function:

h✓(x) = g(✓T x)

Here, g is a link function. There are many. . . but we’ll pick one!

g(z) =
1

1 + e�z
.

How do we interpret h✓(x)?

P(y = 1 | x ; ✓) = h✓(x)

P(y = 0 | x ; ✓) = 1� h✓(x)

SIGMOID
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Logistic Regression: Link Functions

Let’s write the Likelihood function. Recall:

P(y = 1 | x ; ✓) =h✓(x)

P(y = 0 | x ; ✓) =1� h✓(x)

Then,

L(✓) =P(y | X ; ✓) =
nY

i=1

p(y (i) | x (i); ✓)

=
nY

i=1

h✓(x
(i))y

(i)
(1� h✓(x

(i)))1�y (i)
exponents encode “if-then”

Taking logs to compute the log likelihood `(✓) we have:

`(✓) = log L(✓) =
nX

i=1

y
(i) log h✓(x

(i)) + (1� y
(i)) log(1� h✓(x

(i)))

Maximize 
for !



(Log) Likelihoods!

So we’ve shown that finding a ✓ to maximize L(✓) is the same as
maximizing

`(✓) = C (�, n)� 1

�2
J(✓)

Or minimizing, J(✓) directly (why?)

Takeaway: “Under the hood,” solving least squares is

solving a maximum likelihood problem for a particular
probabilistic model.

This view shows a path to generalize to new situations!



Solving the optimization problem

• Stochastic Gradient Descent

After 
computing 
derivatives



Summary for binary classification/ logistic 
regression
• Calculate ℎ! " = $ %""
• Get &((	|	+; %) using ℎ! " , that’s likelihood
• Calculate log likelihood from there
• Maximize log likelihood from there – 

use SGD to maximize for %
• Start with a guess for !
• Keep updating with the rule until convergence



Predicted 
Output



https://www.kaggle.com/code/nicolaspieser/binary-classification-on-the-iris-dataset 

Binary 
Classification



https://www.kaggle.com/code/mattwills8/multi-class-classification-of-iris-dataset 

Multiclass 
classification 
Classification





1 vs All



A Quick and Dirty Intro to Multiclass Classification.
This technique is the daily workhorse of modern AI/ML



Multiclass
Suppose we want to choose among k discrete values, e.g.,
{’Cat’, ’Dog’, ’Car’, ’Bus’} so k = 4.

We encode with one-hot vectors i.e. y 2 {0, 1}k and
Pk

j=1 yj = 1.
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A prediction here is actually a distribution over the k classes. This
leads to the SoftMax function described below (derivation in the
notes!). That is our hypothesis is a vector of k values:

P(y = j |x ; ✓̄) =
exp(✓Tj x)Pk
i=1 exp(✓

T
i x)

.

Here each ✓j has the same dimension as x , i.e., x , ✓j 2 Rd+1 for
j = 1, . . . , k .



Quick Comments on Presentation

I Check for home: does k = 2 case agree with logistic
regression?

P(y = j |x ; ✓) = e✓
T
j x

e✓
T
1 x + e✓

T
2 x

Hint: Given (✓1, ✓2) for a two class model, compare with
logistic regression with the model ✓1 � ✓2.

I For general k , a probability estimate for any k � 1 classes
determines the other class (since estimates must sum to 1).

I With this observation (and some notation!), you can run the
machine from this lecture: multinomials are in the exponential
family, and it tells us how to do inference, training, etc.



How do you train multiclass? (Picture Version)

P(y = j |x ; ✓) =
exp(✓Tj x)Pk
i=1 exp(✓

T
i x)

.

Intuitively, we maximize the probability of the given class.



How do you train multiclass?

Fixing x and ✓, our output is a vector p̂ 2 Rk
+ s.t.

Pk
j=1 p̂j = 1.

p̂j = P(y = j |x ; ✓) =
exp(✓Tj x)Pk
i=1 exp(✓

T
i x)

.

Formally, we maximize the probability of the given class!

We can view as CrossEntropy:

CrossEntropy(p, p̂) = �
X

j

p(x = j) log p̂(x = j).

Here, p is the label, which is a one-hot vector.Thus, if the label is
i , this formula reduces to:

� log p̂(x = i) = � log
exp(✓Ti x)Pk
j=1 exp(✓

T
j x)

.

We minimize this–and you’ve seen the movie, it works the same as
the others!
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