
Lecture Three
Supervised Learning: C lassification

KMA Solaiman
Fall 2023

Adapted From
Chris Re'

Stanford ML

Supervised Learning and Classification

I Linear Regression via a Probabilistic Interpretation

I Logistic Regression

I Optimization Method: Newton’s Method

We’ll learn the maximum likelihood method (a probabilistic
interpretation) to generalize from linear regression to more
sophisticated models.

A Justification for Least Squares?

I Given a training set {(x (i), y (i)) for i = 1, . . . , n} in which
x
(i) 2 Rd+1 and y

(i) 2 R.
I Do find ✓ 2 Rd+1 s.t. ✓ = argmin✓

Pn
i=1(h✓(x

(i))� y
(i))2 in

which h✓(x) = ✓T x .

Where did this model come from?

One way to view is via a probabilistic interpretation (helpful

throughout the course).

A Justification for Least Squares?

I Given a training set {(x (i), y (i)) for i = 1, . . . , n} in which
x
(i) 2 Rd+1 and y

(i) 2 R.
I Do find ✓ 2 Rd+1 s.t. ✓ = argmin✓

Pn
i=1(h✓(x

(i))� y
(i))2 in

which h✓(x) = ✓T x .

Where did this model come from?

One way to view is via a probabilistic interpretation (helpful

throughout the course).

A Justification for Least Squares?

We make an assumption (common in statistics) that the data are
generated according to some model (that may contain random
choices). That is,

y
(i) = ✓T x (i) + "(i).

Here, "(i) is a random variable that captures “noise” that is,
unmodeled e↵ects, measurement errors, etc.

Please keep in mind: this is just a model! As they say, all
models are wrong but some models are useful. This model
has been shockingly useful.

A Justification for Least Squares?

We make an assumption (common in statistics) that the data are
generated according to some model (that may contain random
choices). That is,

y
(i) = ✓T

x
(i) + "(i).

Here, "(i) is a random variable that captures “noise” that is,
unmodeled e↵ects, measurement errors, etc.

Please keep in mind: this is just a model! As they say, all
models are wrong but some models are useful. This model
has been shockingly useful.

What do we expect of the noise?

What properties should we expect from "(i)

y
(i) = ✓T x (i) + "(i).

Again, it’s a model and "(i) is a random variable:

I E["(i)] = 0 – the noise is unbiased.

I The errors for di↵erent points are independent and identically

distributed (called, iid)

E["(i)"(j)] = E["(i)]E["(j)] for i 6= j .

and

E
⇣

"(i)
⌘2

�
= �2

Here �2 is some measure of how noisy the data are. Turns out,
this e↵ectively defines the Gaussian or Normal distribution.

What do we expect of the noise?

What properties should we expect from "(i)

y
(i) = ✓T x (i) + "(i).

Again, it’s a model and "(i) is a random variable:

I E["(i)] = 0 – the noise is unbiased.

I The errors for di↵erent points are independent and identically

distributed (called, iid)

E["(i)"(j)] = E["(i)]E["(j)] for i 6= j .

and

E
⇣

"(i)
⌘2

�
= �2

Here �2 is some measure of how noisy the data are.

Turns out,
this e↵ectively defines the Gaussian or Normal distribution.

What do we expect of the noise?

What properties should we expect from "(i)

y
(i) = ✓T x (i) + "(i).

Again, it’s a model and "(i) is a random variable:

I E["(i)] = 0 – the noise is unbiased.

I The errors for di↵erent points are independent and identically

distributed (called, iid)

E["(i)"(j)] = E["(i)]E["(j)] for i 6= j .

and

E
⇣

"(i)
⌘2

�
= �2

Here �2 is some measure of how noisy the data are. Turns out,
this e↵ectively defines the Gaussian or Normal distribution.

Notation for the Gaussian

We write z ⇠ N (µ,�2) and read these symbols as
z is distributed as a normal with mean µ and standard

deviation �2
.

or equivalently the probability density function -

P(z) =
1

�
p
2⇡

exp

⇢
�(z � µ)2

2�2

�
.............. (10.1)

Notation for Guassians in our Problem
Recall in our model,

y
(i) = ✓T

x
(i) + "(i) in which "(i) ⇠ N (0, �2) (11.1)

or more compactly notation:

y
(i) | x (i); ✓ ⇠ N (✓T

x , �2)............... (11.2)

equivalently, Probability distribution over y(i), given x(i) and parameterized by θ

P

⇣
y
(i) | x (i); ✓

⌘
=

1

�
p
2⇡

exp

(
�

2�2
(y (i) - x(i)θ)2

)

I We condition on x
(i).

I In contrast, ✓ parameterizes or “picks” a distribution.

We use bar (|) versus semicolon (;) notation above.

...... (11.3)

How did we calculate Probability Distribution
of y(i) in 11.3?

1
" 2$ %&' −) ! 	− 0 "

2""
Using our #$$%$	'#$(in
place of), we get

Now if we replace this with
values from 11.1, we get

1
" 2$ %&' − ,(!) 	− &(!)- "

2""

This term gives us the probability distribution over ,(!), but we
must add &(!) as a given, since we will see it as input, so by fiat we
consider this as, .(,(!)|& ! ; -) which is not conditioned on -, as it
isn’t Random Variable

(Log) Likelihoods!

Intuition: among many distributions, pick the one that agrees with
the data the most (is most “likely”).

L(✓) =p(y |X ; ✓) =
nY

i=1

p(y (i) | x (i); ✓) iid assumption

=
nY

i=1

1

�
p
2⇡

exp

(
�(x (i)✓ � y

(i))2

2�2

)

For convenience, we use the Log Likelihood `(✓) = log L(✓).

`(✓) =
nX

i=1

log
1

�
p
2⇡

� (x (i)✓ � y
(i))2

2�2

=n log
1

�
p
2⇡

� 1

2�2

nX

i=1

(x (i)✓ � y
(i))2 = C (�, n)� 1

�2
J(✓)

where C (�, n) = n log 1
�
p
2⇡
.

(Log) Likelihoods!

Intuition: among many distributions, pick the one that agrees with
the data the most (is most “likely”).

L(✓) =p(y |X ; ✓) =
nY

i=1

p(y (i) | x (i); ✓) iid assumption

=
nY

i=1

1

�
p
2⇡

exp

(
�(x (i)✓ � y

(i))2

2�2

)

For convenience, we use the Log Likelihood `(✓) = log L(✓).

`(✓) =
nX

i=1

log
1

�
p
2⇡

� (x (i)✓ � y
(i))2

2�2

=n log
1

�
p
2⇡

� 1

2�2

nX

i=1

(x (i)✓ � y
(i))2 = C (�, n)� 1

�2
J(✓)

where C (�, n) = n log 1
�
p
2⇡
.

(Log) Likelihoods!

Intuition: among many distributions, pick the one that agrees with
the data the most (is most “likely”).

L(✓) =p(y |X ; ✓) =
nY

i=1

p(y (i) | x (i); ✓) iid assumption

=
nY

i=1

1

�
p
2⇡

exp

(
�(x (i)✓ � y

(i))2

2�2

)

For convenience, we use the Log Likelihood `(✓) = log L(✓).

`(✓) =
nX

i=1

log
1

�
p
2⇡

� (x (i)✓ � y
(i))2

2�2

=n log
1

�
p
2⇡

� 1

2�2

nX

i=1

(x (i)✓ � y
(i))2 = C (�, n)� 1

�2
J(✓)

where C (�, n) = n log 1
�
p
2⇡
.

(Log) Likelihoods!

Intuition: among many distributions, pick the one that agrees with
the data the most (is most “likely”).

L(✓) =p(y |X ; ✓) =
nY

i=1

p(y (i) | x (i); ✓) iid assumption

=
nY

i=1

1

�
p
2⇡

exp

(
�(x (i)✓ � y

(i))2

2�2

)

For convenience, we use the Log Likelihood `(✓) = log L(✓).

`(✓) =
nX

i=1

log
1

�
p
2⇡

� (x (i)✓ � y
(i))2

2�2

=n log
1

�
p
2⇡

� 1

2�2

nX

i=1

(x (i)✓ � y
(i))2 = C (�, n)� 1

�2
J(✓)

where C (�, n) = n log 1
�
p
2⇡
.

(Log) Likelihoods!

So we’ve shown that finding a ✓ to maximize L(✓) is the same as
maximizing

`(✓) = C (�, n)� 1

�2
J(✓)

Or minimizing, J(✓) directly (why?)

Takeaway: “Under the hood,” solving least squares is

solving a maximum likelihood problem for a particular
probabilistic model.

This view shows a path to generalize to new situations!

Summary of Least Squares

I We introduced the Maximum Likelihood framework–super
powerful (next lectures)

I We showed that least squares was actually a version of
maximum likelihoods.

I We learned some notation that will help us later in the
course. . .

Classification

Given a training set {(x (i), y (i)) for i = 1, . . . , n} let y (i) 2 {0, 1}.
Why not use regression, say least squares? A picture . . .

Logistic Regression: Link Functions

Given a training set {(x (i), y (i)) for i = 1, . . . , n} let y (i) 2 {0, 1}.
Want h✓(x) 2 [0, 1]. Let’s pick a smooth function:

h✓(x) = g(✓T x)

Here, g is a link function. There are many. . .

but we’ll pick one!

g(z) =
1

1 + e�z
.

How do we interpret h✓(x)?

P(y = 1 | x ; ✓) = h✓(x)

P(y = 0 | x ; ✓) = 1� h✓(x)

Logistic Regression: Link Functions

Given a training set {(x (i), y (i)) for i = 1, . . . , n} let y (i) 2 {0, 1}.
Want h✓(x) 2 [0, 1]. Let’s pick a smooth function:

h✓(x) = g(✓T x)

Here, g is a link function. There are many. . . but we’ll pick one!

g(z) =
1

1 + e�z
.

How do we interpret h✓(x)?

P(y = 1 | x ; ✓) = h✓(x)

P(y = 0 | x ; ✓) = 1� h✓(x)

Logistic Regression: Link Functions

Given a training set {(x (i), y (i)) for i = 1, . . . , n} let y (i) 2 {0, 1}.
Want h✓(x) 2 [0, 1]. Let’s pick a smooth function:

h✓(x) = g(✓T x)

Here, g is a link function. There are many. . . but we’ll pick one!

g(z) =
1

1 + e�z
.

How do we interpret h✓(x)?

P(y = 1 | x ; ✓) = h✓(x)

P(y = 0 | x ; ✓) = 1� h✓(x)

SIGMOID

Logistic Regression: Link Functions

Let’s write the Likelihood function. Recall:

P(y = 1 | x ; ✓) =h✓(x)

P(y = 0 | x ; ✓) =1� h✓(x)

Then,

L(✓) =P(y | X ; ✓) =
nY

i=1

p(y (i) | x (i); ✓)

=
nY

i=1

h✓(x
(i))y

(i)
(1� h✓(x

(i)))1�y (i)
exponents encode “if-then”

Taking logs to compute the log likelihood `(✓) we have:

`(✓) = log L(✓) =
nX

i=1

y
(i) log h✓(x

(i)) + (1� y
(i)) log(1� h✓(x

(i)))

Logistic Regression: Link Functions

Let’s write the Likelihood function. Recall:

P(y = 1 | x ; ✓) =h✓(x)

P(y = 0 | x ; ✓) =1� h✓(x)

Then,

L(✓) =P(y | X ; ✓) =
nY

i=1

p(y (i) | x (i); ✓)

=
nY

i=1

h✓(x
(i))y

(i)
(1� h✓(x

(i)))1�y (i)
exponents encode “if-then”

Taking logs to compute the log likelihood `(✓) we have:

`(✓) = log L(✓) =
nX

i=1

y
(i) log h✓(x

(i)) + (1� y
(i)) log(1� h✓(x

(i)))

We need to go back to Maximum Likelihood Estimation
that we saw before at the beginning of this lecture.

How do we go to a cost function from P (y | X; θ) ?

Logistic Regression: Link Functions

Let’s write the Likelihood function. Recall:

P(y = 1 | x ; ✓) =h✓(x)

P(y = 0 | x ; ✓) =1� h✓(x)

Then,

L(✓) =P(y | X ; ✓) =
nY

i=1

p(y (i) | x (i); ✓)

=
nY

i=1

h✓(x
(i))y

(i)
(1� h✓(x

(i)))1�y (i)
exponents encode “if-then”

Taking logs to compute the log likelihood `(✓) we have:

`(✓) = log L(✓) =
nX

i=1

y
(i) log h✓(x

(i)) + (1� y
(i)) log(1� h✓(x

(i)))

Logistic Regression: Link Functions

Let’s write the Likelihood function. Recall:

P(y = 1 | x ; ✓) =h✓(x)

P(y = 0 | x ; ✓) =1� h✓(x)

Then,

L(✓) =P(y | X ; ✓) =
nY

i=1

p(y (i) | x (i); ✓)

=
nY

i=1

h✓(x
(i))y

(i)
(1� h✓(x

(i)))1�y (i)
exponents encode “if-then”

Taking logs to compute the log likelihood `(✓) we have:

`(✓) = log L(✓) =
nX

i=1

y
(i) log h✓(x

(i)) + (1� y
(i)) log(1� h✓(x

(i)))

Now to solve it. . .

`(✓) = log L(✓) =
nX

i=1

y
(i) log h✓(x

(i)) + (1� y
(i)) log(1� h✓(x

(i)))

We maximize for ✓ but we already saw how to do this! Just
compute derivative, run (S)GD and you’re done with it!

Takeaway: This is another example of the max likelihood
method: we setup the likelihood, take logs, and compute
derivatives.

Time Permitting: There is magic in the derivative. . .

Even more, the batch update can be written in a remarkably

familiar form:

✓(t+1) = ✓(t) +
X

j2B
(y (j) � h✓(x

(j)))x (j).

We sketch why (you can check!) We drop superscripts to simplify
notation and examine a single data point:

y log h✓(x) + (1� y) log(1� h✓(x))

=� y log(1 + e
�✓T x) + (1� y)(�✓T x)� (1� y) log(1 + e

�✓T x)

=� log(1 + e
�✓T x)� (1� y)(✓T x)

We used 1� h✓(x) =
e�✓T x

1�e�✓T x
. We now compute the derivative of

this expression wrt ✓ and get:

e
�✓T x

1 + e�✓T x
x � (1� y)x = (y � h✓(x))x

Perceptron Learning Algorithm

• Modify link function to output either 0 or 1.
• Make g to be a threshold function
• Then use same ℎ$ + = -(/%+) using this g
• Follow the same update rule for /

Summary of Introduction to Classification

I We used the principle of maximum likelihood (and a
probabilistic model) to extend to classification.

I We developed logistic regression from this principle.
I Logistic regression is widely used today.

I We noticed a familiar pattern: take derivatives of the
likelihood, and the derivatives had this (hopefully) intuitive
“misprediction form”

Summary of Introduction to Classification

I We used the principle of maximum likelihood (and a
probabilistic model) to extend to classification.

I We developed logistic regression from this principle.
I Logistic regression is widely used today.

I We noticed a familiar pattern: take derivatives of the
likelihood, and the derivatives had this (hopefully) intuitive
“misprediction form”

Summary of Introduction to Classification

I We used the principle of maximum likelihood (and a
probabilistic model) to extend to classification.

I We developed logistic regression from this principle.
I Logistic regression is widely used today.

I We noticed a familiar pattern: take derivatives of the
likelihood, and the derivatives had this (hopefully) intuitive
“misprediction form”

Newton’s Method

Given f : Rd ! R find x s.t. f (x) = 0.

We apply this with f (✓) = r✓`(✓), the likelihood function

Newton’s Method

Given f : Rd ! R find x s.t. f (x) = 0.

We apply this with f (✓) = r✓`(✓), the likelihood function

Newton’s Method (Drawn in Class)

Given f : Rd ! R find x s.t. f (x) = 0.

Newton’s Method Summary

Given f : Rd ! R find x s.t. f (x) = 0.

I This is the update rule in 1d

x
(t+1) = x

(t) � f (x (t))

f 0(x (t))

I It may converge very fast (quadratic local convergence!)

I For the likelihood, i.e., f (✓) = r✓`(✓) we need to generalize
to a vector-valued function which has:

✓(t+1) = ✓(t) �
⇣
H(✓(t))

⌘�1
r✓`(✓

(t)).

in which Hi ,j(✓) =
@

@✓i@✓j
`(✓).

Optimization Method Summary

Method

Compute per Step Number of Steps
 to convergence

SGD
Minibatch SGD

GD
Newton

I In classical stats, d is small (< 100), n is often small, and
exact parameters matter

I In modern ML, d is huge (billions, trillions), n is huge
(trillions), and parameters used only for prediction
 These are approximate number of computing steps
 Convergence happens when loss settles to within an error range

around the final value.
 Newton would be very fast, where SGD needs a lot of step, but

individual steps are fast, makes up for it

I As a result, (minibatch) SGD is the workhorse of ML.

≈ log(1/ϵ)

≈ ϵ -2

≈ ϵ -1

θ(d)

θ(nd)
Ω(nd2)

Classification Lecture Summary

I We saw the di↵erences between classification and regression.
I We learned about a principle for probabilistic interpretation for

linear regression and classification: Maximum Likelihood.
I We used this to derive logistic regression.
I The Maximum Likelihood principle will be used again next

lecture (and in the future)

I We saw Newton’s method, which is classically used models
(more statistics than ML–it’s not used in most modern ML)

