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Adapted from
Chris Ré
Stanford ML



Supervised Learning and Linear Regression

» Definitions
P Linear Regression
» Batch and Stochastic Gradient

» Normal Equations
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Supervised Learning

» A hypothesis or a prediction function is function h: X — Y

» X is an image, and ) contains “cat” or “not.”
> X is a text snippet, and ) contains “hate speech” or “not.”
» X is house data, and ) could be the price.

> A training set is a set of pairs {(x(1), y(M) ... (x(", y(M)}
s.t. x() € X and y(i) eYfori=1,...,n.

» Given a training set our goal is to produce a good prediction
function h

» Defining “good” will take us a bit. It's a modeling question!
» We will want to use h on new data not in the training set.

» If )V is continuous, then called a regression problem.

> If )V is discrete, then called a classification problem.



Our first example: Regression using Housing Data.



Example Data (Housing Prices from Ames Dataset from

Kaggle)
SalePrice Lot.Area

4 189900 13830
5 195500 9978
9 189000 7500
10 175900 10000

350000 A ¢
12 180400 8402 w®
300000 A
22 216000 7500 250000
00 [ J
36 376162 12858 W%e e §
8000 10000 12000 14000
47 320000 13650 ot

55 216500 7851

56 185088 8577
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How do we represent h? (One popular choice)

h(x) = 6o + 01x1 is an affine function

‘ size ‘ Price
xM 12104 y@® | 400
x@ 12500 y®@ | 900

An example prediction?

Notice the prediction is defined by the parameters 69 and 6;. This
is a huge reduction in the space of functions!



Simple Line Fit

SalePrice Lot.Area

4 189900 13830
5 195500 9978
9 189000 7500
10 175900 10000
12 180400 8402
22 216000 7500
36 376162 12858
47 320000 13650
55 216500 7851
56 185088 8577
58 29292500 9505

350000 A

300000 A

250000 -

200000 -

8000 10000 12000 14000
lot
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We add features (bedrooms and lot size) to incorporate more
information about houses.
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Slightly More Interesting Data

We add features (bedrooms and lot size) to incorporate more
information about houses.

‘ size  bedrooms lot size ‘ Price
x(1) | 2104 4 45k yM | 400
x(2) | 2500 3 30k y®@ | 900

What's a prediction here?
h(X) =0y + O01x1 + Orxo + O3x3.

With the convention that xg = 1 we can write:

3
h(x) = 0
j=0
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Vector Notation for Prediction

‘ size  bedrooms lot size ‘ Price
x(1) | 2104 4 45k y | 400
x| 2500 3 30k y® | 900

We write the vectors as (important notation)

(1)

o ) ;

0= 01 and x(t) = Xh) I and y( = 400
92 X2 4
03 X3(1) 45

We call 6 parameters, x() is the input or the features, and the
output or target is y(). To be clear,

(x,y) is a training example and (x(i),y(i)) is the i example.

We have n examples (i.e., i =1,...,n). There are d features so
x{) and @ are d + 1 dimensional (since xo = 1)
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Visual version of linear regression

350000 A

300000 A

250000 -

200000 -

8000 10000 12000 14000
lot

Let hy(x) = 27:0 6jx; want to choose # so that hy(x) ~ y. One
popular idea called least squares

J(0) = ;z (o) — y)".
i=1

Choose
0 = argmin J(0).
0



Linear Regression Summary

> We saw our first hypothesis class affine or linear functions.

> We refreshed ourselves on notation and introduced
terminology like parameters, features, etc.

P> We saw this paradigm that a “good” hypothesis is some how
one that is close to the data (objective function J).



Linear Regression Summary

> We saw our first hypothesis class affine or linear functions.

» We refreshed ourselves on notation and introduced
terminology like parameters, features, etc.

P> We saw this paradigm that a “good” hypothesis is some how
one that is close to the data (objective function J).

> Next, we'll see how to solve these equations.



Solving the least squares optimization problem.
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Gradient Descent Computation

)
—JODY for j=0,....d.
aejj( ) forj=0,...,

Note that « is called the learning rate or step size.

(t+1) _ p(1)
Gj = Oj —«

Let's compute the derivatives. . .

0 10 - 1\ 2
O g0y =S~ L0 (p iy 00
96,7 Zzaej (ho(x) =)

i=1

=3 () = y0) b
i=1

For our particular hg we have:

0
ho(x) = Ooxo + O1x1 + -+ - + Ogxg SO %hg(x) = Xj
J
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Gradient Descent Computation

Thus, our update rule for component j can be written:
(t+1) _ 5(t) (i ) ) ( )
o+ = g az (hg X!

We write this in vector notation for j =0,...,d as:

plt+1) — g(t) _ aZ(hg(X ) (i),

Saves us a lot of writing! And easier to understand ... eventually.
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Consider our update rule:
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Batch Versus Stochastic Minibatch: Motivation

Consider our update rule:

n

COIONN (he(xm) _ y(f)) ()

i=1

> A single update, our rule examines all n data points.

» In some modern applications (more later) n may be in the
billions or trillions!

> E.g., we try to “predict” every word on the web.

» Idea Sample a few points (maybe even just one!) to
approximate the gradient called Stochastic Gradient (SGD).

» SGD is the workhorse of modern ML, e.g., pytorch and
tensorflow.



Stochastic Minibatch

» We randomly select a batch of B C {1,...,n} where |B| < n.

> We approximate the gradient using just those B points as
follows (vs. gradient descent)

‘;; (hg(x(j)) _ y(j)) 0) s, ,172 (he(xu)) _ y(j)> U).
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Stochastic Minibatch

» We randomly select a batch of B C {1,...,n} where |B| < n.

> We approximate the gradient using just those B points as
follows (vs. gradient descent)

‘B|Z<”9 )) NORS *Z(”@ )) X0

All minibatches are used for each iteration, or epoch and then
start the next one

» So our update rule for SGD is:

oD = 9 —ap " (hg(x(j)) _ y(j)> U

jeB

» NB: scaling of |B| versus nis “hidden" inside choice of ap.



Stochastic Minibatch vs. Gradient Descent

» Recall our rule B points as follows:
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> If |[B| ={1,...,n} (the whole set), then they coincide.

» Smaller B implies a lower quality approximation of the
gradient (higher variance).

» Nevertheless, it may actually converge faster! (Case where the
dataset has many copies of the same point—extreme, but lots
of redundancy)



Stochastic Minibatch vs. Gradient Descent

» Recall our rule B points as follows:

olt+1) — g(t) _ o p Z <h9(x(j)) _ y(j)> xU)
JjeB
> If |[B| ={1,...,n} (the whole set), then they coincide.
» Smaller B implies a lower quality approximation of the

gradient (higher variance).

» Nevertheless, it may actually converge faster! (Case where the
dataset has many copies of the same point—extreme, but lots
of redundancy)

» In practice, choose B proportional to what works well on
modern parallel hardware (GPUs).



Summary of this Subsection of Optimization

» Qur goal was to optimize a loss function to find a good
predictor.

> We learned about gradient descent and the workhorse
algorithm for ML, Stochastic Gradient Descent (SGD).

» We touched on the tradeoffs of choosing the right batch size.



Summary from Today

» We saw a /ot of notation

> We learned about linear regression: the model, how to solve,
and more.

> We learned the workhorse algorithm for ML called SGD.
» Next time: Classification!



